A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the Growth of F. proliferatum and F. culmorum and the Growth of Mycotoxin Using Machine Learning Approach. | LitMetric

In distinct parts of the food web, Fusarium culmorum and Fusarium preserving the relationship can germinate and grow zearalenone (ZEA) and fumonisins (FUM), accordingly. Antimicrobial drugs used to combat these fungi and toxic metabolites raise the risk of hazardous residue in food products, as well as the development of fungus tolerance. For modeling fungal growth and pathogenicity under separate water action ( ) (0.96 and 0.99) and surface temp (20 and 28°C) tyrannies, several machine learning (ML) methodologies (artificial neural, regression trees, and extreme rise enhanced trees) and multiple regression model (MLR) were used also especially in comparison. GR and mycotoxin levels inside the environment often reduced as EOC concentrations grew, although some treatment in association with specific and temperature values caused ZEA production. In terms of predicting the growth rate of F. culmorum and F. maintaining the relationship and the production of ZEA and FUM, random forest techniques outperformed neural network models and extreme gradient boosted trees. The MLR option was the most inefficient. It is the first research to look at the ML potential of bio EVOH products containing EOCs and ambient variables of F. culmorum and F. proliferatum development, as well as the generation of zearalenone and fumonisins. The findings show that these entire novel wrapping technologies, in tandem using machine learning techniques, could be useful in predicting and controlling the dangers connected with fungal species or biotoxins in foodstuff.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307379PMC
http://dx.doi.org/10.1155/2022/9592365DOI Listing

Publication Analysis

Top Keywords

machine learning
12
predicting growth
8
growth proliferatum
4
culmorum
4
proliferatum culmorum
4
culmorum growth
4
growth mycotoxin
4
mycotoxin machine
4
learning approach
4
approach distinct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!