Discovery of potent ebola entry inhibitors with (3S,4aS,8aS)-2-(3-amino-2-hydroxypropyl) decahydroisoquinoline-3-carboxamide scaffold.

Eur J Med Chem

State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, 1 Xiangshanzhi Road, Hangzhou, 310024, China. Electronic address:

Published: October 2022

Ebola virus (EBOV), one member of the family Filoviridae, can causes hemorrhagic fever and other severe diseases in humans with a high mortality rate (25-90%). Until recently, there were no approved drugs and very limited treatment method for Ebola virus disease. In this study, we discovered a series of potent Ebola entry inhibitors with the (3S,4aS,8aS)-2-(3-amino-2-hydroxypropyl)decahydroisoquinoline-3-carboxamide scaffold from high-throughput screening in reported pseudotyped virus system. Further optimization resulted a most potent compound 28 (IC= 0.05 μM, SI = 98), which displayed 3-fold potency compared to the known inhibitor Toremifene (IC= 0.17 μM, SI = 55). Moreover, compound 28 exhibited the remarkable selectivity between EBOV-GP and VSV-G (Spec. Index = 58), thus could exclude nonspecific effects. Structure-activity relationship and molecular docking analysis of the new chemical scaffold provided more information on the binding modes and the spare volume at the binding cavity, thus can guide the design of the further potent compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114608DOI Listing

Publication Analysis

Top Keywords

potent ebola
8
ebola entry
8
entry inhibitors
8
ebola virus
8
discovery potent
4
ebola
4
inhibitors 3s4as8as-2-3-amino-2-hydroxypropyl
4
3s4as8as-2-3-amino-2-hydroxypropyl decahydroisoquinoline-3-carboxamide
4
decahydroisoquinoline-3-carboxamide scaffold
4
scaffold ebola
4

Similar Publications

HIV-1 and BLV are insensitive to SERINC5 restriction under the cell-cell infection.

Microbiol Spectr

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

ine orporator 5 (INC5, SER5) suppresses viral cell-free infection. However, its antiviral potency under viral cell-cell infection is not examined yet. Here, we established the cell-cell infection systems to assess SER5's antiviral activity on HIV-1 and bovine leukemia virus (BLV).

View Article and Find Full Text PDF

Identification of Filovirus Entry Inhibitors from Marine Fungus-Derived Indole Alkaloids.

Mar Drugs

January 2025

Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.

Filoviruses, mainly consisting of the two genera of and , are enveloped negative-strand RNA viruses that can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. However, we still do not have effective medicines for treating these diseases. To search for effective drugs, we have identified three marine indole alkaloids that exhibit potent activities against filovirus infection.

View Article and Find Full Text PDF

The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP).

View Article and Find Full Text PDF

The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as spp. and are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in and spp.

View Article and Find Full Text PDF

is a genus of hazardous pathogens that has caused over 30 outbreaks. However, currently approved therapies are limited in scope, as they are only effective against the Ebola virus and lack cross-protection against other orthoebolaviruses. Here, we demonstrate that a previously isolated human-derived antibody, 2G1, can recognize the glycoprotein (GP) of every orthoebolavirus species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!