The relationship between frequency content and representational dynamics in the decoding of neurophysiological data.

Neuroimage

Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.

Published: October 2022

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses. We therefore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. However, this does not negate the accompanying interpretational challenges. We show that these can be resolved by decoding paradigms that utilise both a signal's instantaneous magnitude and its local gradient information as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are higher, more stable over time, and free of the technical and interpretational challenges previously characterised. We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations of decoding results by linking them more clearly to the underlying signal characteristics that drive them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565838PMC
http://dx.doi.org/10.1016/j.neuroimage.2022.119462DOI Listing

Publication Analysis

Top Keywords

decoding accuracy
12
decoding paradigms
12
decoding
10
relationship frequency
8
neurophysiological data
8
subsequent decoding
8
instantaneous signal
8
signal decoding
8
interpretational challenges
8
frequency content
4

Similar Publications

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

The Insulated Gate Bipolar Transistor (IGBT) is a crucial power semiconductor device, and the integrity of its internal structure directly influences both its electrical performance and long-term reliability. However, the precise semantic segmentation of IGBT ultrasonic tomographic images poses several challenges, primarily due to high-density noise interference and visual distortion caused by target warping. To address these challenges, this paper constructs a dedicated IGBT ultrasonic tomography (IUT) dataset using Scanning Acoustic Microscopy (SAM) and proposes a lightweight Multi-Scale Fusion Network (LMFNet) aimed at improving segmentation accuracy and processing efficiency in ultrasonic images analysis.

View Article and Find Full Text PDF

By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features.

View Article and Find Full Text PDF

Convolutional neural networks (CNNs) have been widely utilized for decoding motor imagery (MI) from electroencephalogram (EEG) signals. However, extracting discriminative spatial-temporal-spectral features from low signal-to-noise ratio EEG signals remains challenging. This paper proposes MBMSNet , a multi-branch, multi-scale, and multi-view CNN with a lightweight temporal attention mechanism for EEG-Based MI decoding.

View Article and Find Full Text PDF

EEG-based cross-subject passive music pitch perception using deep learning models.

Cogn Neurodyn

December 2025

School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, Shandong 250101 China.

Pitch plays an essential role in music perception and forms the fundamental component of melodic interpretation. However, objectively detecting and decoding brain responses to musical pitch perception across subjects remains to be explored. In this study, we employed electroencephalography (EEG) as an objective measure to obtain the neural responses of musical pitch perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!