Although photocatalysis with ultraviolet-visible (UV-vis) light has made considerable advances, it is limited by the low efficiency of UV-vis energy conversion. To overcome this problem, UV-vis light can be replaced with near-infrared (NIR) light. Herein, we coupled eggshell-derived CaCO with a NIR-absorbing CuSe semiconductor and fabricated an insulator-based heterojunction structure. In application case studies of 4-nitrophenol (4-NP) and bacteria, the nanocomposites showed enhanced photocatalysis activity under NIR light induction. A first-principles calculation indicated that photoexcited electrons could transfer from the conduction band of CuSe to the conduction band of CaCO. The main reactive species generated by the photocatalysis were ·CO, and ·OH free radicals. The antibacterial mechanisms of photocatalysis on the cell permeability and DNA layers of the bacterial cells were also revealed. Besides providing novel perspectives and mechanistic understanding of the fabrication of NIR light-driven photocatalysts, this study demonstrates the valorization of eggshell bio-wastes in environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135789DOI Listing

Publication Analysis

Top Keywords

uv-vis light
8
nir light
8
conduction band
8
photocatalysis
5
designing waste
4
waste bioresource-derived
4
bioresource-derived value-added
4
value-added nanohybrids
4
nanohybrids efficient
4
efficient photocatalysis
4

Similar Publications

Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.

View Article and Find Full Text PDF

The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.

View Article and Find Full Text PDF

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (AAV) is one of the main viral vector-based gene therapy platforms. AAV is a virus consisting of a ≈25 nm diameter capsid with a ≈4.7 kb cargo capacity.

View Article and Find Full Text PDF

The use of bioactive compounds in plants as reducing, stabilizing, and capping agents in nanoparticle manufacturing is an exceptionally eco-friendly approach. This work used rosehip seed extract, acquired by automatic solvent extraction, in the microwave-assisted green production of zinc oxide nanoparticles (ZnO NPs). The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of the extracted materials and nanoparticles were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!