Acute liver damage (ALD) can cause biochemical and pathological changes, which can lead to major complications and even death. The goal of the study was to examine the therapeutic efficacy of liposomes of Bergenia ciliata extract against thioacetamide-induced liver damage in rats. Liposomal batches of B. ciliata extract were prepared by altering the kind and amount of phospholipids and characterized through various physiochemical properties such as laser diffraction, TEM, encapsulation efficiency, stability and in-vitro release studies. In-vivo hepatoprotective studies were performed on TAA-induced acute hepatic damage model. Further, in-silico studies of bergenin against the three hepatic damage markers viz. TGF-β1, TNF-α and interleukin-6 were also performed. Laser diffraction and TEM showed that most stable liposome batch of B. ciliata extract were in the range of 678-1170 nm with encapsulation efficiency of 84.3±3.5. Extract was found to be rapidly dissociated from B. ciliata liposomes in HCl than PBS, according to in-vitro release data. In-vivo data revealed a significant decline in LFT indicators, amelioration of pathological changes and high bergenin bioavailability in the liposomal group. Protective activity of bergenin against ALD targets like TGF-β1, TNF-α and interleukin-6 was anticipated via molecular docking research. As a result, the current findings of the study indicate that B. ciliata liposomes and bergenin have promising ameliorative potential in the management of ALD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2022.07.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!