Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tetanus toxoid (TTxd), developed over 100 years ago, is a clinically effective, legacy vaccine against tetanus. Due to the extreme potency of native tetanus toxin, manufacturing and regulatory efforts often focus on TTxd production, standardization, and safety, rather than product modernization. Recently, a genetically detoxified, full-length tetanus toxin protein (8MTT) was reported as a tetanus vaccine alternative to TTxd (Przedpelski et al. mBio, 2020). Here we describe the production of 8MTT in Gor/Met E. coli, a strain engineered to have an oxidative cytoplasm, allowing for the expression of soluble, disulfide-bonded proteins. The strain was also designed to efficiently cleave N-terminal methionine, the obligatory start amino acid for E. coli expressed proteins. 8MTT was purified as a soluble protein from the cytoplasm in a two-column protocol to > 99 % purity, yielding 0.5 g of purified 8MTT/liter of fermentation broth with low endotoxin contamination, and antigenic purity of 3500 Lf/mg protein nitrogen. Mouse immunizations showed 8MTT to be an immunogenic vaccine and effective as a carrier protein for peptide and polysaccharide conjugates. These studies validate 8MTT as commercially viable and, unlike the heterogenous tetanus toxoid, a uniform carrier protein for conjugate vaccines. The development of a recombinant, genetically detoxified toxin produced in E. coli aligns the tetanus vaccine with modern manufacturing, regulatory, standardization, and safety requirements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336728 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2022.07.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!