Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In heterogeneous catalysis, metal particle morphology and size can influence markedly the activity. It is of great significance to rationally design and control the synthesis of Pt at the atomic level to demonstrate the structure-activity relationship toward electrocatalysis. Herein, a powerful strategy is reported to synthesize graphene-supported platinum-based electrocatalyst, that is, nanocatalysts with controllable size can be prepared by iced photochemical method, including single atoms (Pt-SA@HG), nanoclusters (Pt-Clu@HG), and nanocrystalline (Pt-Nc@HG). The Pt-SA@HG exhibits unexpected electrocatalytic hydrogen evolution reaction (HER) performances with 13 mV overpotential at 10 mA cm current densities which surpass Pt-Clu@HG and Pt-Nc@HG. The in situ X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations determine the Pt-C active site is linchpin to the excellent HER performance of Pt-SA@HG. Compared with the traditional Pt-N coordination structure, the pure carbon coordinated Pt-C site is more favorable for HER. This work opens up a new way to adjust the metal particle size and catalytic performance of graphene at a multiscale level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202203422 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!