Manipulating photons in artificially structured materials is highly desired in modern photonic technology. Nontrivial topological structures are rapidly emerging as a state-of-art platform for achieving unprecedented fascinating phenomena of photon manipulation. However, the current studies mainly focus on planar structures, and the fabrication of photonic microstructures with specific topological geometric features still remains a great challenge. Extending the topological photonics to 3D microarchitectures is expected to enrich the photon manipulation capabilities and further advance the topological photonic devices. Here, a femtosecond laser direct writing technique is employed to fabricate 3D topological Möbius microring resonators from dye-doped polymer. The high-quality-factor Möbius microring resonator supports a unique spin-orbit coupled lasing at very low threshold. Due to the spin-orbit coupling induced geometric/Berry phase, the Möbius microrings, in striking contrast with ordinary microrings, output laser signals with all polarization states. The manipulation of miniaturized coherent light sources in the fabricated Möbius microrings represents a significant step forward toward 3D topological photonics that offers a novel design philosophy for functional photonic and optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202202812DOI Listing

Publication Analysis

Top Keywords

möbius microring
12
photonic microstructures
8
photon manipulation
8
topological photonics
8
möbius microrings
8
topological
6
photonic
5
3d-printed möbius
4
microring lasers
4
lasers topology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!