A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fully-Exposed Pd Cluster Catalyst: An Excellent Catalytic Antibacterial Nanomaterial. | LitMetric

Fully-Exposed Pd Cluster Catalyst: An Excellent Catalytic Antibacterial Nanomaterial.

Small

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, P. R. China.

Published: August 2022

Exploring antibacterial nanomaterials with excellent catalytic antibacterial properties has always been a hot research topic. However, the construction of nanomaterials with robust antibacterial activity at the atomic level remains a great challenge. Here a fully-exposed Pd cluster atomically-dispersed on nanodiamond-graphene (Pd /ND@G) with excellent catalytic antibacterial properties is reported. The fully-exposed Pd cluster nanozyme provides atomically-dispersed Pd cluster sites that facilitate the activation of oxygen. Notably, the oxidase-like catalytic performance of the fully-exposed Pd cluster nanozyme is much higher than that of Pd single-atom oxidase mimic, Pd nanoparticles oxidase mimic and even the previously reported palladium-based oxidase mimics. Under the density functional theory (DFT) calculations, the Pd cluster sites can efficiently catalyze the decomposition of oxygen to generate reactive oxygen species, resulting in strong antibacterial properties. This research provides a valuable insight to the design of novel oxidase mimic and antibacterial nanomaterial.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202203283DOI Listing

Publication Analysis

Top Keywords

fully-exposed cluster
16
excellent catalytic
12
catalytic antibacterial
12
antibacterial properties
12
oxidase mimic
12
antibacterial nanomaterial
8
cluster nanozyme
8
cluster sites
8
antibacterial
7
cluster
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!