We describe an autosomal dominant, multi-generational, amyotrophic lateral sclerosis (ALS) pedigree in which disease co-segregates with a heterozygous p.Y374X nonsense mutation within TDP-43. Mislocalization of TDP-43 and formation of insoluble TDP-43-positive neuronal cytoplasmic inclusions is the hallmark pathology in >95% of ALS patients. Neuropathological examination of the single case for which CNS tissue was available indicated typical TDP-43 pathology within lower motor neurons, but classical TDP-43-positive inclusions were absent from motor cortex. The mutated allele is transcribed and translated in patient fibroblasts and motor cortex tissue, but overall TDP-43 protein expression is reduced compared to wild-type controls. Despite absence of TDP-43-positive inclusions we confirmed deficient TDP-43 splicing function within motor cortex tissue. Furthermore, urea fractionation and mass spectrometry of motor cortex tissue carrying the mutation revealed atypical TDP-43 protein species but not typical C-terminal fragments. We conclude that the p.Y374X mutation underpins a monogenic, fully penetrant form of ALS. Reduced expression of TDP-43 combined with atypical TDP-43 protein species and absent C-terminal fragments extends the molecular phenotypes associated with TDP-43 mutations and with ALS more broadly. Future work will need to include the findings from this pedigree in dissecting the mechanisms of TDP-43-mediated toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836368 | PMC |
http://dx.doi.org/10.1111/bpa.13104 | DOI Listing |
Mol Neurodegener
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.
Background: Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin.
Objectives: Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS.
Alzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
Background: Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a common neuropathologic finding at advanced age that associates with hippocampal sclerosis (HS) and is often comorbid with AD pathology. Neuroimaging measurements of LATE-NC-associated limbic degeneration have been proposed as indirect biomarkers, but molecular-specific biomarkers for LATE-NC are still lacking. Here we used combined ante-mortem blood and MRI data to study TDP-43 levels in plasma-derived small extracellular vesicles (sEV-TDP-43) and hippocampal volume (HV) in relation to LATE-NC and HS at autopsy.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: The nuclear clearance and cytoplasmic aggregation of splicing repressor TAR DNA/RNA-binding protein-43 (TDP-43) occur in approximately 50% of Alzheimer's disease (AD) cases and about 45% of frontotemporal dementia (FTD). However, it is not clear how early such mechanism occurs in AD and FTD as there is no method of detecting TDP-43 dysregulation in living individuals. Since the loss of nuclear TDP-43 leads to cryptic exon inclusion, we propose that cryptic exon-encoded peptides may be detected in patient biofluids as biomarkers of TDP-43 loss of function.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
Background: About 20-30% of clinically diagnosed AD dementia patients do not meet pathologic criteria for AD and this proportion is even higher in amnestic MCI. Among tau-negative amnestic patients, limbic-predominant age-related TDP-43 encephalopathy (LATE) has been described as a principal diagnostic alternative, especially at advanced age. LATE is characterized by a specific temporo-limbic hypometabolic signature on FDG-PET that may aid in differential diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!