The cue-lure-responding New Guinea fruit fly, Bactrocera trivialis, poses a biosecurity risk to neighbouring countries, e.g., Australia. In trapping programs, lure caught flies are usually morphologically discriminated from non-target species; however, DNA barcoding can be used to confirm similar species where morphology is inconclusive, e.g., Bactrocera breviaculeus and B. rufofuscula. This can take days-and a laboratory-to resolve. A quicker, simpler, molecular diagnostic assay would facilitate a more rapid detection and potential incursion response. We developed LAMP assays targeting cytochrome c oxidase subunit I (COI) and Eukaryotic Translation Initiation Factor 3 Subunit L (EIF3L); both assays detected B. trivialis within 25 min. The BtrivCOI and BtrivEIF3L assay anneal derivatives were 82.7 ± 0.8 °C and 83.3 ± 1.3 °C, respectively, detecting down to 1 × 10 copies/µL and 1 × 10 copies/µL, respectively. Each assay amplified some non-targets from our test panel; however notably, BtrivCOI eliminated all morphologically similar non-targets, and combined, the assays eliminated all non-targets. Double-stranded DNA gBlocks were developed as positive controls; anneal derivatives for the COI and EIF3L gBlocks were 84.1 ± 0.7 °C and 85.8 ± 0.2 °C, respectively. We recommend the BtrivCOI assay for confirmation of suspect cue-lure-trapped B. trivialis, with BtrivEIF3L used for secondary confirmation when required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308764 | PMC |
http://dx.doi.org/10.1038/s41598-022-16901-0 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
Background: Brucellosis is a zoonotic disease caused by Brucella spp., affecting various animals and humans, leading to significant economic and public health impacts. Traditional diagnostic methods, mainly serological, often fail to detect seronegative carriers, which continue to spread the infection.
View Article and Find Full Text PDFCornea
January 2025
Academic Ophthalmology, School of Medicine, AU1, University of Nottingham, Nottingham, United Kingdom.
Purpose: Anterior segment optical coherence tomography (AS-OCT) is increasingly being used to complement slit-lamp biomicroscopy in the evaluation of corneal infections. Our purpose was to analyze, compare, and correlate the clinical signs elicited by these 2 methods in patients with infectious keratitis (IK).
Methods: Slit-lamp photomicrographs (diffuse and slit beam) and AS-OCT scans were obtained from 20 consecutive patients (21 eyes) with IK.
Eur J Ophthalmol
January 2025
Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA.
Background: To describe a case of guttae recurrence in bilateral corneal grafts in a patient with a known diagnosis of Fuchs endothelial dystrophy, more than three decades following penetrating keratoplasty.
Methods: Case Report.
Results: A 79-year-old White woman presented with declining vision, right eye worse than the left.
Anal Chim Acta
January 2025
State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China. Electronic address:
Background: The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!