Anomalous concentrations and environmental implications of rare earth elements in the rock-soil-moss system in the black shale area.

Chemosphere

College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China. Electronic address:

Published: November 2022

Nowadays, rare earth elements (REEs) pollution caused by anthropogenic activities has aroused great attention, but the contribution of natural geological sources remains unclear. In this study, parent rocks, corresponding soil, and overlying moss (Pohlia flexuosa Harv. In Hook) were collected to identify the release, transportation, and environmental exposure of REEs in the black shale areas. The results showed that black shales had elevated REEs levels (245 ± 124 mg kg) and served as a geogenic source of REEs. The released REEs were temporarily enriched in the acidized soil (327 ± 91.8 mg kg, pH 4.87 ± 0.810) and were still highly bioavailable, thereby resulting in REEs accumulated up to a high level in moss P. flexuosa (86.2 ± 64.3 mg kg). Hence, the ecological risks of REEs in black shale areas were assuredly enhanced. The shale-normalized results of REEs concentrations in the parent rock - soil - moss system followed a remarkably identical pattern and were characterized by strong enrichment in HREEs (La/Yb 0.520 ± 0.274), indicating that geogenic input was responsible for the concentration and composition of REEs in mosses. Moreover, REEs were readily preserved and not easily fractionated in moss P. flexuosa due to its special morphological features, indicating the lithological signatures of REEs in black shales were readily inherited by moss P. flexuosa, and underwent only minor losses. Overall, moss P. flexuosa could be used as a powerful tool to reflect the content and composition of REEs in black shale areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135770DOI Listing

Publication Analysis

Top Keywords

black shale
16
rees black
16
moss flexuosa
16
rees
12
shale areas
12
rare earth
8
earth elements
8
black shales
8
composition rees
8
black
6

Similar Publications

Health Risk of Heavy Metal and Implication for Ecological Threat in Soils Weathered from the Black Shale.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Surficial Geochemistry, Ministry of Education School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.

Heavy metals were analyzed in rhizosphere soils and rice grains collected from typical black shale areas. The concentrations of As, Cd, Cu, and Zn in the rhizosphere soil exceeded the current soil environmental quality standards. Cd exhibited the highest bioaccumulation capacity, with 45% of rice grains exceeding food safety limit.

View Article and Find Full Text PDF

Quantifying the Pore Characteristics and Heterogeneity of the Lower Cambrian Black Shale in the Deep-Water Region, South China.

ACS Omega

January 2025

Hubei Key Laboratory of Petroleum Geochemistry and Environment, College of Resources and Environment, Yangtze University, Wuhan 430100, China.

Recently, significant breakthroughs have been made in the exploration of shale gas in the Lower Cambrian black shale of the Sichuan Basin, indicating a promising commercial extraction potential. However, there remains considerable controversy regarding the pore structural characteristics for this shale formation, especially in the deep-water region. To address this, this paper focused on core samples from two shale gas wells (Xa1 and Xb1) located in the slope-basin facies zone during the Early Cambrian.

View Article and Find Full Text PDF

Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.

View Article and Find Full Text PDF

The tectonic of the Middle and Late Ordovician in the western margin of the north China Platform is complex, and the accumulation models of organic matter of the Wulalike Formation formed during this period are still unclear. Total organic carbon (TOC) content, mineral composition, organic carbon isotope composition, as well as the major and trace elements in the shale samples were all measured in this study. The Wulalike Formation was formed during a tectonic transition from a passive continental margin to an active continental margin.

View Article and Find Full Text PDF

Following the NOE, the early Cambrian witnessed the global deposition of marine black shales with high U concentrations. This study analyzes the Lower Cambrian Yuertusi Formation in the Tarim Basin, China, focusing on U isotopes to elucidate U enrichment mechanisms in black shales and their potential for helium generation. In wells XK-1, LT-1, and LT-3, the average U concentrations in the Yuertusi Formation black shale are 41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!