A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The metabolism of pyrene by a novel Altererythrobacter sp. with in-situ co-substrates: A mechanistic analysis based on pathway, genomics, and enzyme activity. | LitMetric

Using co-substrates to enhance the metabolic activity of microbes is an effective way for high-molecular-weight polycyclic aromatic hydrocarbons removal in petroleum-contaminated environments. However, the long degradation period and exhausting substrates limit the enhancement of metabolic activity. In this study, Altererythrobacter sp. N1 was screened from petroleum-contaminated soil in Shengli Oilfield, China, which could utilize pyrene as the sole carbon source and energy source. Saturated aromatic fractions and crude oils were used as in-situ co-substrates to enhance pyrene degradation. Enzyme activity was influenced by the different co-substrates. The highest degradation rate (75.98%) was achieved when crude oil was used as the substrate because strain N1 could utilize saturated and aromatic hydrocarbons from crude oil simultaneously to enhance the degrading enzyme activity. Moreover, the phthalate pathway was dominant, while the salicylate pathway was secondary. Furthermore, the Rieske-type aromatic cyclo-dioxygenase gene was annotated in the Altererythrobacter sp. N1 genome for the first time. Therefore, the co-metabolism of pyrene was sustained to achieve a long degradation period without the addition of exogenous substrates. This study is valuable as a potential method for the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135784DOI Listing

Publication Analysis

Top Keywords

enzyme activity
12
aromatic hydrocarbons
12
in-situ co-substrates
8
co-substrates enhance
8
metabolic activity
8
high-molecular-weight polycyclic
8
polycyclic aromatic
8
long degradation
8
degradation period
8
saturated aromatic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!