This study aimed to evaluate the 6D inter-fraction tumour localisation errors in 20 tongue and 20 prostate cancer patients treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy. The patient tumour localisation errors in lateral, longitudinal and vertical translation axes and pitch, roll and yaw rotational axes were analysed by automatic image registration of daily pretreatment kilovoltage cone-beam computed tomography (kV-CBCT) with planning CT in 1000 fractions. The overall mean error (M), systematic error (Σ), random error (σ) and planning target volume (PTV) margins were evaluated. The frequency distributions of setup errors were normally distributed about the mean except for pitch in the tongue and prostate. The overall 3D vector length ≥ 5 mm was 14.2 and 49.8% in the ca-tongue and ca-prostate, respectively. The frequency of rotational errors ≥1 degree was a maximum of 37 and 59.5%, respectively, in ca-tongue and ca-prostate. The M, Σ and σ for all translational and rotational axes decreased with increasing frequency of verification correction in ca-tongue and ca-prostate patients. Similarly, the PTV margin was reduced with no correction to alternate day correction from a maximum of 4.7 to 2.5 mm in ca-tongue and from a maximum of 8.6 to 4.7 mm in ca-prostate. The results emphasised the vital role of the higher frequency of kV-CBCT based setup correction in reducing M, Σ, σ and PTV margins in ca-tongue and ca-prostate patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncac145 | DOI Listing |
Radiat Prot Dosimetry
September 2022
Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
This study aimed to evaluate the 6D inter-fraction tumour localisation errors in 20 tongue and 20 prostate cancer patients treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy. The patient tumour localisation errors in lateral, longitudinal and vertical translation axes and pitch, roll and yaw rotational axes were analysed by automatic image registration of daily pretreatment kilovoltage cone-beam computed tomography (kV-CBCT) with planning CT in 1000 fractions. The overall mean error (M), systematic error (Σ), random error (σ) and planning target volume (PTV) margins were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!