The present and the future of protein biosensor engineering.

Curr Opin Struct Biol

CSIRO-QUT Synthetic Biology Alliance, Queensland University of Technology, Brisbane, QLD, 4001, Australia; Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia; Australian Research Council Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4001, Australia. Electronic address:

Published: August 2022

Protein biosensors play increasingly important roles in cell and neurobiology and have the potential to revolutionise the way clinical and industrial analytics are performed. The gradual transition from multicomponent biosensors to fully integrated single chain allosteric biosensors has brought the field closer to commercial applications. We evaluate various approaches for converting constitutively active protein reporter domains into analyte operated switches. We discuss the paucity of the natural receptors that undergo conformational changes sufficiently large to control the activity of allosteric reporter domains. This problem can be overcome by constructing artificial versions of such receptors. The design path to such receptors involves the construction of Chemically Induced Dimerisation systems (CIDs) that can be configured to operate single and two-component biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2022.102424DOI Listing

Publication Analysis

Top Keywords

reporter domains
8
future protein
4
protein biosensor
4
biosensor engineering
4
engineering protein
4
biosensors
4
protein biosensors
4
biosensors play
4
play increasingly
4
increasingly roles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!