Obesity impacts multiple sites of the hypothalamus-pituitary gland-ovary axis (HPO axis) and has become a leading cause of female infertility. However, the critical hypothalamic neurons that participate in the development of obesity-induced infertility have not been well defined yet. Previous studies suggested that metabolic-sensing agouti-related peptide-expressing (AgRP) neurons in the arcuate nucleus (ARC) are hyperactive in diet-induced obesity (DIO) mice. We hypothesize that these neurons may convey metabolic dysfunction onto the HPO axis and contribute to obesity-induced infertility's pathophysiological process. To determine if AgRP neurons in obesity play a necessary role in the development of reproductive impairment in obesity, we used the chemogenetic method to normalize the neuronal activity of AgRP neurons in DIO female mice and test if their fertility can be restored. Our results indicated that chemogenetic inhibition of AgRP neurons could fully rescue the reproductive performance of DIO female mice, as manifested by recovered sex hormonal levels, ovulation, and fecundity. Moreover, we assayed serum AgRP levels in normal-weight and obese women and found elevated AgRP levels in obese subjects, suggesting the correlation between obesity and AgRP neuronal hyperactivity. Our results indicated that AgRP neurons constitute a central node connecting metabolism and reproduction, and dysfunctions of these neurons play a crucial role in reproductive impairment induced by metabolic abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.07.032 | DOI Listing |
Neurosci Biobehav Rev
January 2025
Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China. Electronic address:
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure.
View Article and Find Full Text PDFEndocrinology
January 2025
Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.
View Article and Find Full Text PDFMol Metab
January 2025
Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).
View Article and Find Full Text PDFCell Metab
December 2024
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA. Electronic address:
When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice.
View Article and Find Full Text PDFCaloric depletion leads to behavioral changes that help an animal find food and restore its homeostatic balance. Hunger increases exploration and risk-taking behavior, allowing an animal to forage for food despite risks; however, the neural circuitry underlying this change is unknown. Here, we characterize how hunger restructures an animal's spontaneous behavior as well as its directed exploration of a novel object.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!