Unlabelled: The RNA viruses are marked by high genetic diversity, which allows them to quickly adapt to new and resistant hosts. The pathogenic turnip mosaic virus (TuMV) infects Brassicaceae plant species all over the world.

Aim: To study the evolution and host expansion of a TuMV for the first time in India using molecular population genetic framework.

Materials And Results: Here, we decipher the complete genome sequences of two TuMV world-B3 strains infecting yellow and black mustard in India through high-throughput RNA sequencing subjecting ribosomal RNA depleted mRNA isolated from leaves exhibiting puckering and mosaic symptoms with 100% incidence and high severity in the experimental field. The viral genomes of the two isolates were 9817 and 9829 nucleotides long. They featured two open reading frames (ORFs), one of which encoded a polyprotein comprised of 3164 amino acids and the other of which encoded a PIPO protein of 62 amino acids.

Conclusions: The two TuMV strains from New Delhi region shared identity with the world-B pathotype and subpathotype world B3 showcasing its emergence first time in South Asia. In contrast, other isolates reported previously from South Asia were all Asian-BR pathotypes.

Significance And Impact Of The Study: According to our knowledge, this is the first instance of TuMV association with black mustard naturally. Their geographical prevalence justifies a lower degree of genetic differentiation and higher rate of gene flow calculated between the world-B and Asian-BR pathotypes. This study provides insights on population structuring, expansions and evolution, level of genetic heterogeneity and variability of worldwide prevalent isolates of TuMV which will further aid in understanding virus epidemiology and help prevent losses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.15731DOI Listing

Publication Analysis

Top Keywords

high-throughput rna
8
rna sequencing
8
turnip mosaic
8
mosaic virus
8
black mustard
8
south asia
8
tumv
6
genetic
5
sequencing genetic
4
genetic structure
4

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

The effect of LARP7 on gene expression during osteogenesis.

Mol Biol Rep

January 2025

Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.

Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.

View Article and Find Full Text PDF

The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial.

View Article and Find Full Text PDF

Sequence-Dependent Slowdown of DNA Translocation Using Transmembrane RNA-DNA Interactions in MoS Nanopore.

J Phys Chem B

January 2025

Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The emergence of nanopores in two-dimensional (2D) nanomaterials offers an attractive solid-state platform for high-throughput and low-cost DNA sequencing. However, several challenges remain to be addressed before their wide application, including the too-fast DNA translocation speed (compared to state-of-the-art single nucleoside detection techniques) and too large noise/signal ratios due to DNA fluctuations inside the nanopores. Here, we use molecular dynamics (MD) simulations to demonstrate the feasibility of utilizing RNA-DNA interactions in modulating DNA translocations in 2D MoS nanopores.

View Article and Find Full Text PDF

Genomic characterization of Huntington's disease genetic modifiers informs drug target tractability.

Brain Commun

January 2025

Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaR3E 0T6.

Huntington's disease is caused by a CAG repeat in the gene. Repeat length correlates inversely with the age of onset but only explains part of the observed clinical variability. Genome-wide association studies highlight DNA repair genes in modifying disease onset, but further research is required to identify causal genes and evaluate their tractability as drug targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!