Spatiotemporal patterns and drivers of stem methane flux from two poplar forests with different soil textures.

Tree Physiol

Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.

Published: December 2022

In forest ecosystems, the majority of methane (CH4) research focuses on soils, whereas tree stem CH4 flux and driving factors remain poorly understood. We measured the in situ stem CH4 flux using the static chamber-gas chromatography method at different heights in two poplar (Populus spp.) forests with separate soil textures. We evaluated the relationship between stem CH4 fluxes and environmental factors with linear mixed models and estimated the tree CH4 emission rate at the stand level. Our results showed that poplar stems were a net source of atmospheric CH4. The mean stem CH4 emission rates were 97.51 ± 6.21 μg·m-2·h-1 in Sihong and 67.04 ± 5.64 μg·m-2·h-1 in Dongtai. The stem CH4 emission rate in Sihong with clay loam soils was significantly higher (P < 0.001) than that in Dongtai with sandy loam soils. The stem CH4 emission rate also showed a seasonal variation, minimum in winter and maximum in summer. The stem CH4 emission rate generally decreased with increasing sampling height. Although the differences in CH4 emission rates between stem heights were significant in the annual averages, these differences were driven by differences observed in the summer. Stem CH4 emission rates were significantly and positively correlated with air temperature (P < 0.001), relative humidity (P < 0.001), soil water content (P < 0.001) and soil CH4 flux (P < 0.001). At these sites, the soil emitted CH4 to the atmosphere in summer (mainly from June to September) but absorbed CH4 from the atmosphere during the other season. At the stand level, tree CH4 emissions accounted for 2-35.4% of soil CH4 uptake. Overall, tree stem CH4 efflux could be an important component of the forest CH4 budget. Therefore, it is necessary to conduct more in situ monitoring of stem CH4 flux to accurately estimate the CH4 budget in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpac091DOI Listing

Publication Analysis

Top Keywords

stem ch4
20
ch4 emission
12
soil textures
8
ch4
8
ch4 flux
8
emission rate
8
stem
6
spatiotemporal patterns
4
patterns drivers
4
drivers stem
4

Similar Publications

AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.

View Article and Find Full Text PDF

Free-standing bimetallic Co/Ni-MOF foams toward enhanced methane dry reforming under non-thermal plasma catalysis.

J Colloid Interface Sci

December 2024

Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China. Electronic address:

Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO- temperature-programmed desorption (TPD) result.

View Article and Find Full Text PDF

Individual and interactive effects of temperature and blue light on canola growth, lignin biosynthesis and methane emissions.

J Plant Physiol

December 2024

Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, Nova Scotia, B3M 2J6, Canada. Electronic address:

It is now well documented that plants produce methane (CH) under aerobic conditions. However, the mechanisms of methane production in plants, its potential precursors, and the factors that are involved in the process are not fully understood. Few studies have considered the effects of blue light on methane emissions from plants; however, the combined effects of temperature and blue light have not been studied.

View Article and Find Full Text PDF

Tissue-specific transcriptome analyses unveils candidate genes for flavonoid biosynthesis, regulation and transport in the medicinal plant Ilex asprella.

Sci Rep

December 2024

School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China.

Article Synopsis
  • The study investigates the genes related to flavonoid synthesis, regulation, and transport in a plant species called Ilex asprella, identifying 28,478 differentially expressed genes (DEGs) across leaf, stem, and root tissues.
  • A detailed analysis reveals specific patterns of gene expression for flavonoid pathways, indicating that different pathways are dominant in different plant tissues: roots are more active in stilbenes and anthocyanins, while leaves focus on flavonols, and stems are associated with isoflavones.
  • The research highlights the presence of key regulatory genes and transporters in these pathways and notes the lack of certain genes necessary for producing specific flavonoids, providing insights valuable for medicinal
View Article and Find Full Text PDF

A long-term high-resolution dataset of grasslands grazing intensity in China.

Sci Data

November 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100091, China.

Grazing is a significant anthropogenic disturbance to grasslands, impacting their function and composition, and affecting carbon budgets and greenhouse gas emissions. However, accurate evaluations of grazing impacts are limited by the absence of long-term high-resolution grazing intensity data (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!