POIKiloderma, tendon contractures, myopathy, pulmonary fibrosis is a congenital multisystem disorder due to FAM111B dominant variants. We present a literature review focusing on the frequency and the impact of hepatic involvement and a case report of a patient with severe end-stage liver disease. Whole exome sequencing (WES) was conducted on the proband and his parents. A de novo FAM111B: c.1879A > G; (p.Arg627Gly) variant was identified. Hepatic involvement is present in 11 out of the 30 patients described in the literature, with different levels of dysfunction ranging from mild transaminitis to liver fibrosis found in three different cases by liver biopsies. Liver involvement seems to be a significant cause of morbidity. We propose to modify the previous acronym in POIK-TMPL: including POIKiloderma, tendon contractures, myopathy, pulmonary fibrosis/pancreas insufficiency and cancer, liver involvement/lymphedema. Moreover, we suggest screening patients with FAM111B variants for liver involvement from the first month of life and continue with an appropriate follow-up. Further studies are needed to better understand this frequent complication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546324 | PMC |
http://dx.doi.org/10.1002/ajmg.a.62906 | DOI Listing |
Eur J Med Res
December 2024
Graduate School of Education, Shandong Sport University, Jinan, Shandong, China.
A high-fat diet and physical inactivity are key contributors to obesity, predisposing individuals to various chronic diseases, such as cardiovascular disease and diabetes, which involve multiple organs and tissues. To better understand the role of multi-organ interaction mechanisms in the rising incidence of obesity and its associated chronic conditions, treatment and prevention strategies are being extensively investigated. This review examines the signaling mechanisms between different tissues and organs, with a particular focus on the crosstalk between adipose tissue and the muscle, brain, liver, and heart, and potentially offers new strategies for the treatment and management of obesity and its complications.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Neurology and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China.
Background: Epilepsy, as a chronic noncommunicable disease with recurrent seizures, may be a marker of deterioration or alteration in other underlying neurological diseases. This study aimed to investigate the relationship of epilepsy with brain function, other common brain disorders, and their underlying mechanisms.
Methods: The study was based on clinical diagnostic and test data from 426,527 participants in the UK Biobank, of whom 3,251 were diagnosed with epilepsy at baseline.
Anticancer Res
January 2025
Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
Background/aim: Lipoprotein(a) (Lp(a)) is a complex protein involved in the transport of insoluble lipids in plasma. Its expression is predominantly genetically determined, with 70% to over 90% influenced by the number of Kringle IV type 2 domains. This study investigated the association between preoperative serum Lp(a) level and development of post-pancreatectomy nonalcoholic fatty liver disease (NAFLD) in patients who underwent pancreatectomy.
View Article and Find Full Text PDFBrain Behav
January 2025
INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats.
Methods: Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks.
Dev Cell
December 2024
State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China. Electronic address:
The neurotransmitter gamma-aminobutyric acid (GABA) has been thought to be involved in the development of some types of cancer. Yet, the de novo synthesis of GABA and how it functions in hepatocellular carcinoma (HCC) remain unclear. Here, we report that SLC6A12 acts as a transporter of GABA, and that aldehyde dehydrogenase 9 family member A1 (ALDH9A1), not glutamate decarboxylase 1 (GAD1), generates GABA in human HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!