Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this work lies in the use of ionic liquids as corrosion inhibitors due to the difficulty in some oil fields with the solubility of corrosion inhibitors and these materials can be miscible with water and thus provide a solution to such problems in the industry. The second purpose is concerned with the lower toxicity of these compounds compared with the most common corrosion inhibitors. The study covered the corrosion inhibition performance of the ionic liquid 1-butyl-3-methylimidazolium trifluoromethyl sulfonate ([BMIm]TfO) for carbon steel in 3.5% NaCl solutions. The study comprised electrochemical, adsorption, and quantum chemical investigations. The results manifested that [BMIm]TfO can be considered a promising corrosion inhibitor and the inhibition efficacy intensifies as the concentration rises. The observed inhibitive effect can be correlated to the adsorption of the ionic liquid species and the creation of protecting films on the surface. The mode of adsorption follows the Langmuir adsorption isotherm. The polarization results showed that the ionic liquid [BMIm]TfO functions as a mixed inhibitor. Reliance of the corrosion influence on the temperature in the existence and absence of [BMIm]TfO was demonstrated in the temperature range of 303-333 K using polarization data. Activation parameters were determined and discussed. The observed inhibition performance of [BMIm]TfO was correlated with the electronic properties of the ionic liquid using a quantum chemical study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307760 | PMC |
http://dx.doi.org/10.1038/s41598-022-16755-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!