Typical everyday sounds, such as those of speech or running water, are spectrotemporally complex. The ability to recognize complex sounds (CxS) and their associated meaning is presumed to rely on their stable neural representations across time. The auditory cortex is critical for processing of CxS, yet little is known of the degree of stability of auditory cortical representations of CxS across days. Previous studies have shown that the auditory cortex represents CxS identity with a substantial degree of invariance to basic sound attributes such as frequency. We therefore hypothesized that auditory cortical representations of CxS are more stable across days than those of sounds that lack spectrotemporal structure such as pure tones (PTs). To test this hypothesis, we recorded responses of identified L2/3 auditory cortical excitatory neurons to both PTs and CxS across days using two-photon calcium imaging in awake mice. Auditory cortical neurons showed significant daily changes of responses to both types of sounds, yet responses to CxS exhibited significantly lower rates of daily change than those of PTs. Furthermore, daily changes in response profiles to PTs tended to be more stimulus-specific, reflecting changes in sound selectivity, as compared to changes of CxS responses. Lastly, the enhanced stability of responses to CxS was evident across longer time intervals as well. Together, these results suggest that spectrotemporally CxS are more stably represented in the auditory cortex across time than PTs. These findings support a role of the auditory cortex in representing CxS identity across time.The ability to recognize everyday complex sounds such as those of speech or running water is presumed to rely on their stable neural representations. Yet, little is known of the degree of stability of single-neuron sound responses across days. As the auditory cortex is critical for complex sound perception, we hypothesized that the auditory cortical representations of complex sounds are relatively stable across days. To test this, we recorded sound responses of identified auditory cortical neurons across days in awake mice. We found that auditory cortical responses to complex sounds are significantly more stable across days as compared to those of simple pure tones. These findings support a role of the auditory cortex in representing complex sound identity across time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347310PMC
http://dx.doi.org/10.1523/ENEURO.0031-22.2022DOI Listing

Publication Analysis

Top Keywords

auditory cortex
28
auditory cortical
28
complex sounds
16
auditory
14
complex sound
12
cortical representations
12
stable days
12
cxs
11
enhanced stability
8
complex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!