Background: Real-time prediction is key to prevention and control of infections associated with health-care settings. Contacts enable spread of many infections, yet most risk prediction frameworks fail to account for their dynamics. We developed, tested, and internationally validated a real-time machine-learning framework, incorporating dynamic patient-contact networks to predict hospital-onset COVID-19 infections (HOCIs) at the individual level.

Methods: We report an international retrospective cohort study of our framework, which extracted patient-contact networks from routine hospital data and combined network-derived variables with clinical and contextual information to predict individual infection risk. We trained and tested the framework on HOCIs using the data from 51 157 hospital inpatients admitted to a UK National Health Service hospital group (Imperial College Healthcare NHS Trust) between April 1, 2020, and April 1, 2021, intersecting the first two COVID-19 surges. We validated the framework using data from a Swiss hospital group (Department of Rehabilitation, Geneva University Hospitals) during a COVID-19 surge (from March 1 to May 31, 2020; 40 057 inpatients) and from the same UK group after COVID-19 surges (from April 2 to Aug 13, 2021; 43 375 inpatients). All inpatients with a bed allocation during the study periods were included in the computation of network-derived and contextual variables. In predicting patient-level HOCI risk, only inpatients spending 3 or more days in hospital during the study period were examined for HOCI acquisition risk.

Findings: The framework was highly predictive across test data with all variable types (area under the curve [AUC]-receiver operating characteristic curve [ROC] 0·89 [95% CI 0·88-0·90]) and similarly predictive using only contact-network variables (0·88 [0·86-0·90]). Prediction was reduced when using only hospital contextual (AUC-ROC 0·82 [95% CI 0·80-0·84]) or patient clinical (0·64 [0·62-0·66]) variables. A model with only three variables (ie, network closeness, direct contacts with infectious patients [network derived], and hospital COVID-19 prevalence [hospital contextual]) achieved AUC-ROC 0·85 (95% CI 0·82-0·88). Incorporating contact-network variables improved performance across both validation datasets (AUC-ROC in the Geneva dataset increased from 0·84 [95% CI 0·82-0·86] to 0·88 [0·86-0·90]; AUC-ROC in the UK post-surge dataset increased from 0·49 [0·46-0·52] to 0·68 [0·64-0·70]).

Interpretation: Dynamic contact networks are robust predictors of individual patient risk of HOCIs. Their integration in clinical care could enhance individualised infection prevention and early diagnosis of COVID-19 and other nosocomial infections.

Funding: Medical Research Foundation, WHO, Engineering and Physical Sciences Research Council, National Institute for Health Research (NIHR), Swiss National Science Foundation, and German Research Foundation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296105PMC
http://dx.doi.org/10.1016/S2589-7500(22)00093-0DOI Listing

Publication Analysis

Top Keywords

hospital-onset covid-19
8
covid-19 infections
8
international retrospective
8
retrospective cohort
8
cohort study
8
patient-contact networks
8
hospital group
8
covid-19 surges
8
contact-network variables
8
0·88 [0·86-0·90]
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!