Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review.

Carbohydr Polym

Institut Européen des Membranes-IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France. Electronic address:

Published: October 2022

Cellulose nanocrystal (CNC) has recently gained much attention due to its unique properties such as abundancy, biodegradability, high strength, large surface area, functional ability, template structure, and sustainability. To broaden its application and enhance its compatibility with other materials, CNC can be modified via different methods. The modification is based on introducing new functions, including esterification, silylation, carbamation, polymerization, and so on. The application can concern many fields, such as polymer reinforcement, packaging, water treatment, textiles, biosensors, etc. Herein, we summarize the main approaches employed for the chemical modification and the use of the modified CNC material in the preparation of nanocomposite films and membranes, along with some emerging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119790DOI Listing

Publication Analysis

Top Keywords

chemical modification
8
cellulose nanocrystal
8
nanocrystal cnc
8
nanocomposite films
8
progress chemical
4
modification cellulose
4
cnc
4
cnc application
4
application nanocomposite
4
films membranes-a
4

Similar Publications

The structure of His15 acetamide-modified hen egg-white lysozyme: a nice surprise from an old friend.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Chemistry `Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.

Hen egg-white lysozyme (HEWL) is a small polycationic protein which is highly soluble and stable. This has led to it becoming a `molecular laboratory' where chemical biological operations and structural techniques are tested. To date, HEWL accounts for 1233 PDB entries, roughly 0.

View Article and Find Full Text PDF

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

Enhancing CO Oversaturation in the Confined Water Enables Superior Gas Selectivity of 2D Membranes.

J Phys Chem Lett

January 2025

Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.

View Article and Find Full Text PDF

The application of nanotechnology in medical biology has seen a significant rise in recent years because of the introduction of novel tools that include supramolecular systems, complexes, and composites. Dendrimers are one of the remarkable examples of such tools. These spherical, regularly branching structures with enhanced cell compatibility and bioavailability have shown to be an excellent option for gene or drug administration.

View Article and Find Full Text PDF

Functionalization of Polymer Surfaces for Organic Photoresist Materials.

ACS Appl Mater Interfaces

January 2025

Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, United States.

Photoresists are thin film materials designed to transform an optimal image into a mechanical mask. Diverse exposure techniques such as photolithography induce modifications in the exposed areas that result in solubility changes that can then be selectively removed with appropriate agents (developers). Photoresist materials need to keep pace with the increasingly demand for feature size reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!