A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene-Environment Interactions During the First Thousand Days Influence Childhood Neurological Diagnosis. | LitMetric

Gene-Environment Interactions During the First Thousand Days Influence Childhood Neurological Diagnosis.

Semin Pediatr Neurol

Department of Pediatrics, Division of Pediatric Neurology, Fetal/Neonatal Neurology Program, Rainbow Babies and Children's Hospital/MacDonald Hospital for Women, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH. Electronic address:

Published: July 2022

AI Article Synopsis

  • Gene-environment (G x E) interactions play a crucial role in influencing neurological outcomes, especially in infants and children under 2 years, where early development significantly impacts lifelong brain health.
  • The maternal-placental-fetal triad is central to understanding how prenatal factors like maternal immune activation and ischemic placental diseases contribute to fetal brain injuries and subsequent neurological issues.
  • Different analytical approaches, both horizontal (considering age-appropriate clinical phenotypes) and vertical (integrating genetic and systemic interactions), are essential for understanding the nuanced effects of G x E interactions throughout development and for designing effective preventative and reparative strategies for neurological health.

Article Abstract

Gene-environment (G x E) interactions significantly influence neurologic outcomes. The maternal-placental-fetal (MPF) triad, neonate, or child less than 2 years may first exhibit significant brain disorders. Neuroplasticity during the first 1000 days will more likely result in life-long effects given critical periods of development. Developmental origins and life-course principles help recognize changing neurologic phenotypes across ages. Dual diagnostic approaches are discussed using representative case scenarios to highlight time-dependent G x E interactions that contribute to neurologic sequelae. Horizontal analyses identify clinically relevant phenotypic form and function at different ages. Vertical analyses integrate the approach using systems-biology from genetic through multi-organ system interactions during each developmental age to understand etiopathogenesis. The process of ontogenetic adaptation results in immediate or delayed positive and negative outcomes specific to the developmental niche, expressed either as a healthy child or one with neurologic sequelae. Maternal immune activation, ischemic placental disease, and fetal inflammatory response represent prenatal disease pathways that contribute to fetal brain injuries. These processes involve G x E interactions within the MPF triad, phenotypically expressed as fetal brain malformations or destructive injuries within the MPF triad. A neonatal minority express encephalopathy, seizures, stroke, and encephalopathy of prematurity as a continuum of trimester-specific G x E interactions. This group may later present with childhood sequelae. A healthy neonatal majority present at older ages with sequelae such as developmental disorders, epilepsy, mental health diseases, tumors, and neurodegenerative disease, often during the first 1000 days. Effective preventive, rescue, and reparative neuroprotective strategies require consideration of G x E interactions interplay over time. Addressing maternal and pediatric health disparities will maximize medical equity with positive global outcomes that reduce the burden of neurologic diseases across the lifespan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spen.2022.100970DOI Listing

Publication Analysis

Top Keywords

mpf triad
12
gene-environment interactions
8
1000 days
8
neurologic sequelae
8
fetal brain
8
interactions
6
neurologic
5
interactions days
4
days influence
4
influence childhood
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!