Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403493PMC
http://dx.doi.org/10.1016/j.jbc.2022.102292DOI Listing

Publication Analysis

Top Keywords

katna1
13
microtubule severing
12
neurite outgrowth
12
microtubule-cleaving enzyme
8
katna1 promotes
8
promotes microtubule
8
regulates development
8
development neural
8
neural protrusions
8
katna1 sumo2
8

Similar Publications

Background: Nor1/NR4A3 is a member of the NR4A subfamily of nuclear receptors that play essential roles in regulating gene expression related to development, cell homeostasis and neurological functions. However, Nor1 is still considered an orphan receptor, as its natural ligand remains unclear for mediating transcriptional activation. Yet other activation signals may modulate Nor1 activity, although their precise role in the development and maintenance of the nervous system remains elusive.

View Article and Find Full Text PDF

Katanins, a class of microtubule-severing enzymes, are potent M-phase regulators in oocytes and somatic cells. How the complex and evolutionarily crucial, male mammalian meiotic spindle is sculpted remains unknown. Here, using multiple single and double gene knockout mice, we reveal that the canonical katanin A-subunit KATNA1 and its close paralogue KATNAL1 together execute multiple aspects of meiosis.

View Article and Find Full Text PDF

The primary cilium functions as a cellular sensory organelle and signaling antenna that detects and transduces extracellular signals. Mutations in the human gene (ciliogenesis associated kinase 1) cause abnormal cilia elongation and faulty Hedgehog signaling, associated with developmental disorders and epilepsy. CILK1 is a protein kinase that requires dual phosphorylation of its TDY motif for activation and its extended C-terminal intrinsically disordered region (IDR) mediates targeting to the basal body and substrate recognition.

View Article and Find Full Text PDF

A potential posttranscriptional regulator for p60-katanin: miR-124-3p.

Cytoskeleton (Hoboken)

December 2023

Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey.

Katanin is a microtubule severing protein belonging to the ATPase family and consists of two subunits; p60-katanin synthesized by the KATNA1 gene and p80-katanin synthesized by the KATNB1 gene. Microtubule severing is one of the mechanisms that allow the reorganization of microtubules depending on cellular needs. While this reorganization of microtubules is associated with mitosis in dividing cells, it primarily takes part in the formation of structures such as axons and dendrites in nondividing mature neurons.

View Article and Find Full Text PDF

Selection and validation of novel stable reference genes for qPCR analysis in EMT and MET.

Exp Cell Res

July 2023

Izmir International Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylül University Health Campus, 35340, Balçova, İzmir, Turkey. Electronic address:

Quantitative real-time polymerase chain reaction is a powerful tool for quantifying gene expression. The relative quantification relies on normalizing the data to reference genes or internal controls not modulated by the experimental conditions. The most widely used internal controls occasionally show changed expression patterns in different experimental settings, such as the mesenchymal to epithelial transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!