Accumulation of lipids by the oleaginous yeast Yarrowia lipolytica grown on carboxylic acids simulating syngas and carbon dioxide fermentation.

Bioresour Technol

Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008-La Coruña, Spain. Electronic address:

Published: September 2022

Volatile fatty acids (VFAs) can be considered as low-cost carbon substrates for lipid accumulation by oleaginous yeasts. This study demonstrates that a common mixture of VFAs, typically obtained from the anaerobic fermentation of C1-gases by some acetogenic bacteria, can be used in a second aerobic fermentation with the yeast Yarrowia lipolytica to obtain lipids as precursors of biodiesel. In the batch experiments, the preference of Yarrowia lipolytica W29 for acetic acid over butyric and caproic acids was demonstrated, with the highest consumption rate reaching 0.664 g/L·h. In the bioreactor experiments, the amount initial biomass inoculated, as well as the initial acid concentration, were found to have a significant influence on the process. Though the lipid content was relatively low, it can be optimized and further improved. Oleic, linoleic and palmitic acids accounted for about 80 % of the fatty acids in the lipids, which makes them suitable for biodiesel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127649DOI Listing

Publication Analysis

Top Keywords

yarrowia lipolytica
12
yeast yarrowia
8
fatty acids
8
acids
5
accumulation lipids
4
lipids oleaginous
4
oleaginous yeast
4
lipolytica grown
4
grown carboxylic
4
carboxylic acids
4

Similar Publications

Bioenergy production from yeast through a thermo-chemical platform.

Bioresour Technol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763 Republic of Korea. Electronic address:

Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method.

View Article and Find Full Text PDF

Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica.

Biotechnol J

January 2025

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.

View Article and Find Full Text PDF

Following a request from the European Commission, the European Food Safety Authority was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of canthaxanthin, regarding the addition of a new production route, by the yeast CBS 146148. The additive is already authorised as sensory feed additive for use in feed for chickens for fattening, minor poultry species for fattening, laying poultry, poultry reared for laying, ornamental fish, ornamental birds and ornamental breeder hens. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concludes that canthaxanthin produced with CBS 146148 is considered safe for the target species, the consumer and the environment under the current authorised conditions of use.

View Article and Find Full Text PDF

Following a request from the European Commission, the EFSA was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of the feed additive consisting of a preparation of canthaxanthin (CAROPHYLL® Red 10%), regarding the addition of a new production route, by the yeast CBS 146148 and to modify the additive specifications by substituting ethoxyquin by 4.4% butylated hydroxytoluene (BHT) and increasing the limit for dichloromethane to 80 mg/kg. The additive is already authorised as zootechnical feed additive for breeder hens.

View Article and Find Full Text PDF

Engineering Yarrowia lipolytica for the production of β-carotene by carbon and redox rebalancing.

J Biol Eng

January 2025

Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.

Background: β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!