Unravelling groundwater and surface water sources in the Esteros del Iberá Wetland Area: An isotopic approach.

Sci Total Environ

Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena (UPTC), Cartagena, Spain.

Published: November 2022

AI Article Synopsis

  • The Esteros del Iberá Wetland Area (EIWA) in NE Argentina is a significant freshwater system, integrated with the southern part of the transboundary Guarani Aquifer System (SAG), spanning over 37,930 km.
  • A multi-tracer study was conducted using major ionic species and isotopes to investigate how groundwater from the SAG contributes to the surface water of the EIWA.
  • Results demonstrated complex mixing patterns influenced by geological structures, revealing upward groundwater flows and the interactions between different groundwater sources, which are crucial for effective water management in the wetlands.

Article Abstract

In the Esteros del Iberá Wetland Area (EIWA, NE Argentina), the southern sector of the transboundary Guarani Aquifer System (SAG) is overlain by the Ramsar listed Iberá Wetlands and several rivers, that combined extend across 37,930 km and represent one of the largest freshwater systems on the South American continent. Previous hydrogeological studies encompassing the entire SAG proposed preferential discharge of groundwater of various origins and ages to the EIWA. In this study, a multi-tracer study using major ionic species, δO, δH and Rn was conducted in lagoons, rivers, wells, and boreholes in the EIWA to confirm if discharge from the transboundary SAG is contributing to the surface water system. End-member Mixing Analysis (EMMA) determined the existence of four main end-members: groundwater from the SAG, more saline groundwater from the deeper Pre-SAG, and two poorly mineralised end-members from shallow, Post-SAG. EMMA calculations clearly illustrated complex binary and ternary mixing patterns involving the four end-members and highlighted the role of geological structures, specifically regional steep faults, in controlling the mixing patterns. Rn activities allowed in-situ identification of preferential deep groundwater discharge into both surface waters and shallow groundwaters. These findings provide strong evidence for the widespread existence of upward flows along major faults in this sector of the SAG, inducing complex mixing flow patterns and explaining the presence of old groundwater in shallow aquifers. Mapping the sources of water and the hydrological interactions are relevant for improving water balance estimates and develop management policies towards the preservation of these wetlands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157475DOI Listing

Publication Analysis

Top Keywords

surface water
8
esteros del
8
del iberá
8
iberá wetland
8
wetland area
8
mixing patterns
8
sag
5
groundwater
5
unravelling groundwater
4
groundwater surface
4

Similar Publications

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Precipitation recycling, where evapotranspiration (ET) from the land surface contributes to precipitation within the same region, is a critical component of the water cycle. This process is especially important for the US Corn Belt, where extensive cropland expansions and irrigation activities have significantly transformed the landscape and affected the regional climate. Previous studies investigating precipitation recycling typically relied on analytical models with simplifying assumptions, overlooking the complex interactions between groundwater hydrology and agricultural management.

View Article and Find Full Text PDF

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!