A case study on small-size microplastics in water and snails in an urban river.

Sci Total Environ

Chinese Society For Environmental Sciences, Beijing 100082, China. Electronic address:

Published: November 2022

Microplastic pollution has become pervasive in aquatic ecosystems. They readily interact with aquatic biota, potentially subjecting them to ecological and health risks. Urban rivers are also affected by microplastics due to intense anthropogenic activity. Nevertheless, relatively little is known about the physiocochemistry or ecotoxicology of microplastics in urban rivers. The present study used laser direct infrared chemical imaging to investigate microplastic pollution in a highly urbanized river in Beijing, China. Surface water was sampled at five sites along the river in March and July, and the benthic snail Bellamya aeruginosa was also collected at each location in July. Thirteen and fifteen different polymers were detected and identified in the surface water sampled in March and July, respectively. Thirteen different polymers were found and isolated in the snails. Of these, polypropylene, polyamide and polyethylene predominated in the microplastic particles. Moreover, the average abundance of the microplastic was significantly higher in the surface water sampled in July (39.55 ± 4.78 particles L) than in March (22.00 ± 4.87 particles L) (p < 0.05). The average microplastic abundance of snails across all sites was 28.13 ± 4.18 particles, among which the Q2 site has significantly higher microplastic abundance than station Q3-Q5 (p < 0.05). Microplastic particles 10-100 μm in size predominated in both the surface water and the snails. By contrast, the proportions of microplastic particles 200-500 μm in size were substantially smaller. The measured microplastic pollution load and microplastic pollution risk indices in the surface water indicated that the current microplastic pollution level in the Qing River was moderate from upstream to downstream. Moreover, the potential adverse effects of microplastic particles on snails remain unclear. Further research is required to elucidate small-size microplastics' environmental fate and potential ecological risks in urban rivers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157461DOI Listing

Publication Analysis

Top Keywords

microplastic pollution
20
surface water
20
microplastic particles
16
microplastic
12
urban rivers
12
water sampled
12
water snails
8
risks urban
8
march july
8
july thirteen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!