For decades, insight into fundamental principles of human biology and disease has been obtained primarily by experiments in animal models. While this has allowed researchers to understand many human biological processes in great detail, some developmental and disease mechanisms have proven difficult to study due to inherent species differences. The advent of organoid technology more than 10 years ago has established laboratory-grown organ tissues as an additional model system to recapitulate human-specific aspects of biology. The use of human 3D organoids, as well as other advances in single-cell technologies, has revealed unprecedented insights into human biology and disease mechanisms, especially those that distinguish humans from other species. This review highlights novel advances in organoid biology with a focus on how organoid technology has generated a better understanding of human-specific processes in development and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2022.06.051 | DOI Listing |
J Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFBackground: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.
The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features.
View Article and Find Full Text PDFCell Death Dis
January 2025
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
January 2025
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!