Polycyclic aromatic hydrocarbons (PAHs) are prominent lead structures for organic optoelectronic materials. This work describes the synthesis of three B,S-doped PAHs with heptacene-type scaffolds via nucleophilic aromatic substitution reactions between fluorinated arylborane precursors and 1,2-(MeSiS)CH/1,8-diazabicyclo[5.4.0]undec-7-ene (72-92% yield). All compounds contain tricoordinate B atoms at their 7,16-positions, kinetically protected by mesityl (Mes) substituents. PAHs / feature two/four S atoms at their 5,18-/5,9,14,18-positions; PAH is a 6,8,15,17-tetrafluoro derivative of . For comparison, we also prepared the skewed naphtho[2,3-]pentaphene-type isomer . The simultaneous presence of electron-accepting B atoms and electron-donating S atoms results in a redox-ambiphilic behavior; the radical cations [] and [] were characterized by electron paramagnetic resonance spectroscopy. Several low-lying charge-transfer states exist, some of which (especially S-to-B and Mes-to-B transitions) compete on the excited-state potential-energy surface. Consistent with the calculated state characters and oscillator strengths, this competition results in a spread of fluorescence quantum yields (2-27%). The optoelectronic properties of change drastically upon addition of Ag ions: while the color of in CHCl changes bathochromically from yellow to red (λ from 463 to 486 nm; -0.13 eV), the emission band shifts hypsochromically from 606 to 545 nm (+0.23 eV), and the fluorescence quantum yield increases from 12 to 43%. According to titration experiments, higher order adducts [Ag] are formed. As a suitable system for modeling Ag complexation, our calculations predict a dimer structure ( = = 2) with AgS core, approximately linear S-Ag-S fragments, and Ag-Ag interaction. The computed optoelectronic properties of [Ag] agree well with the experimentally observed ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c04516 | DOI Listing |
Anal Chim Acta
February 2025
Food Laboratory of Zhongyuan, Luohe, 462000, Henan Province, PR China.
Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.
View Article and Find Full Text PDFEnviron Res
January 2025
, UniSA STEM, ScaRCE, University of South Australia, SA 5000, Australia. Electronic address:
Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Sedimentary Basin and Oil and Gas Resources, China Geological Survey, Ministry of Land and Resources & Chengdu Center of Geological Survey, Chengdu 610081, China; College of Materials and Chemistry& Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain-especially in cities with complex topographies-remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48-2300 m).
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Electronic address:
Reductions in polycyclic aromatic hydrocarbon (PAH) concentrations have been observed during frying. However, transformation mechanisms of PAHs remain unclear. We hypothesize that PAHs may be oxidized into oxygenated polycyclic aromatic hydrocarbons (OPAHs) and other derivatives during frying.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Long-term occupational exposure to metals and organics have been reported to be under great health risks. However, limited data are available on the molecular mechanism between combined exposure to metals and polycyclic aromatic hydrocarbons (PAHs) and harmful health effects. In present work, non-target metabolomics study was conducted based on urine samples from nonferrous metal smelting workers (n = 207), surrounding residents (n = 180), and the control residents (n = 187) by using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!