A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polystyrene nanoparticle exposure supports ROS-NLRP3 axis-dependent DNA-NET to promote liver inflammation. | LitMetric

AI Article Synopsis

  • The increasing use of plastics and nanotechnology enhances convenience but also raises environmental concerns and health risks from nanoparticles (NPs).
  • Research indicates that exposure to polystyrene nanoparticles (PSNP) leads to liver injury, characterized by increased neutrophil infiltration and the formation of neutrophil extracellular traps (NETs).
  • The study identifies a mechanism linking PSNP exposure to liver inflammation via the reactive oxygen species (ROS)-NLRP3 pathway, suggesting that DNase I may help reduce NET formation and alleviate inflammation in the liver.

Article Abstract

The widespread use of plastics and the rapid development of nanotechnology bring convenience to our lives while also increasing the environmental burden and increasing the risk of exposure of organisms to nanoparticles (NPs). While recent studies have revealed an association between nanoparticles and liver injury, the intrinsic mechanism of NP exposure-induced liver damage remains to be explored. Here, we found that polystyrene nanoparticle (PSNP) exposure resulted in a significant increase in local neutrophil infiltration and neutrophil extracellular trap (NET) formation in the liver. Analysis of a coculture system of PBNs and AML12 cells revealed that PSNP-induced NET formation positively correlates with the reactive oxygen species (ROS)-NLRP3 axis. Inhibition of ROS and genetic and pharmacological inhibition of NLRP3 in AML12 can both alleviate PSNP-induced NET formation. In turn, exposure of mice to deoxyribonuclease I (DNase Ⅰ)-coated PSNPs disassembled NET in vivo, neutrophil infiltration in the liver was reduced, the ROS-NLRP3 axis was inhibited, and the expression of cytokines was markedly decreased. Collectively, our work reveals a mechanism of NET formation in PSNP exposure-induced liver inflammation and highlights the possible role of DNase Ⅰ as a key enzyme in degrading NET and alleviating liver inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129502DOI Listing

Publication Analysis

Top Keywords

net formation
16
liver inflammation
12
polystyrene nanoparticle
8
exposure-induced liver
8
neutrophil infiltration
8
psnp-induced net
8
ros-nlrp3 axis
8
liver
7
net
6
exposure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!