Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Proteins immobilized in metal-organic frameworks (MOFs) often show extraordinary stability. However, most efforts to immobilize proteins in MOFs have only been exploratory. Herein, we present the first systematic study on the thermodynamics of protein immobilization in MOFs. Using insulin as a probe, we leveraged isothermal titration calorimetry (ITC) to investigate how topology, pore size, and hydrophobicity of MOFs influence immobilization. ITC data obtained from the encapsulation of insulin in a series of Zr-MOFs reveals that MOFs provide proteins with a hydrophobic stabilizing microenvironment, making the encapsulation entropically driven. In particular, the pyrene-based NU-1000 tightly encapsulates insulin in its ideally sized mesopores and stabilizes insulin through π-π stacking interactions, resulting in the most enthalpically favored encapsulation process among this series. This study reveals critical insights into the structure-property relationships of protein immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202209110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!