The design of a spin imbalance within the crystallographic unit cell of bottom-up engineered 1D graphene nanoribbons (GNRs) gives rise to nonzero magnetic moments within each cell. Here, we demonstrate the bottom-up assembly and spectroscopic characterization of a one-dimensional Kondo spin chain formed by a chevron-type GNR (cGNR) physisorbed on Au(111). Substitutional nitrogen core doping introduces a pair of low-lying occupied states per monomer within the semiconducting gap of cGNRs. Charging resulting from the interaction with the gold substrate quenches one electronic state for each monomer, leaving behind a 1D chain of radical cations commensurate with the unit cell of the ribbon. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal the signature of a Kondo resonance emerging from the interaction of = 1/2 spin centers in each monomer core with itinerant electrons in the Au substrate. STM tip lift-off experiments locally reduce the effective screening of the unpaired radical cation being lifted, revealing a robust exchange coupling between neighboring spin centers. First-principles DFT-LSDA calculations support the presence of magnetic moments in the core of this GNR when it is placed on Au.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c04432 | DOI Listing |
Nanomaterials (Basel)
January 2025
Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61200 Brno, Czech Republic.
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE).
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya St. 70, 117393 Moscow, Russia.
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.
This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).
View Article and Find Full Text PDF3 Biotech
February 2025
Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai, Tamil Nadu 600034 India.
Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!