Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Apple (Malus × domestica Borkh.) cropping behavior, if not regulated, is often manifested by high yields of small-sized fruit in so called ON-years, which are usually followed by strongly reduced crop loads in OFF-years. Such cropping pattern is defined as biennial bearing and causes significant losses in apple production. The growth of apple fruit overlaps with the formation of flower buds, which remain dormant until the following spring. Earlier works proposed that some fruit-derived mobile compounds, as e.g., phytohormones, could suppress flower bud formation that thereby leads to biennial bearing. We addressed this hypothesis by analyzing 39 phytohormones in apple seeds, fruit flesh and by measuring phytohormone export from the fruits of the biennial bearing cultivar 'Fuji' and of the regular bearing cultivar 'Gala'. Moreover, we analyzed the same compounds in bourse buds from fruiting (ON-trees) and non-fruiting (OFF-trees) spurs of both apple cultivars over the period of flower bud formation. Our results showed that apple fruit exported at least 14 phytohormones including indole-3-acetic acid and gibberellin A3; however, their influence on flower bud formation was inconclusive. A gibberellin-like compound, which was detected exclusively in bourse buds, was significantly more abundant in bourse buds from ON-trees compared with OFF-trees. Cultivar differences were marked by the accumulation of trans-zeatin-O-glucoside in bourse buds of 'Gala' ON-trees, whereas the levels of this compound in 'Gala' OFF were significantly lower and comparable to those in 'Fuji' ON- and OFF-trees. Particular phytohormones including five cytokinin forms as well as abscisic acid and its degradation products had higher levels in bourse buds from OFF-trees compared with ON-trees and were therefore proposed as potential promotors of flower bud initiation. The work discusses regulatory roles of phytohormones in flower bud formation in apple based on the novel and to date most comprehensive phytohormone profiles of apple fruit and buds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912367 | PMC |
http://dx.doi.org/10.1093/treephys/tpac083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!