Current concepts in treating cancer usually neglect individual tumor characteristics such as a given mutational make up. Consequently, a "one-size-fits-all" therapeutic concept may commonly fail in terms of efficacy, evolving drug resistance, and side effects. In times of omics, novel elaborated and personalized approaches emerge for efficiently eradicate cancer cells, while sparing healthy cells. Synthetic lethality-based strategies offer promising opportunities to exploit tumor-specific vulnerabilities and improve tolerability. Furthermore, taking advantage of putative synergistic interaction between synthetic lethal drugs specifically targeting a given tumor genotype, could further enhance efficacy and tolerability, thus preventing drug resistance. Mechanisms of drug resistance in cancers are manifold but critical to assess, in view of restoring drug sensibility. In this chapter, we provide a framework to investigate synthetic lethality and synergistic interactions, as well as drug resistance in cancer cells in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2513-2_5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!