Ligand-Promoted Fluorinated Olefination of Isatins at the C5 Position via a Palladium Catalyst.

Org Lett

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Published: August 2022

A palladium-catalyzed nondirected fluorinated olefination was developed. The oxalyl amide ligand greatly improved the yield of the reaction. A wide variety of isatin derivatives were well tolerated and yielded the corresponding products in moderate to good yields. Various fluorinated olefins were also compatible. The application and synthesis of bioactive compounds such as a Metisazone derivative highlight the synthetic value of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c02104DOI Listing

Publication Analysis

Top Keywords

fluorinated olefination
8
ligand-promoted fluorinated
4
olefination isatins
4
isatins position
4
position palladium
4
palladium catalyst
4
catalyst palladium-catalyzed
4
palladium-catalyzed nondirected
4
nondirected fluorinated
4
olefination developed
4

Similar Publications

BrCFCN for photocatalytic cyanodifluoromethylation.

Nat Commun

January 2025

Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.

Considering the unique electronic properties of the CF and the CN groups, the CFCN group has significant potential in drug and agrochemical development, as well as material sciences. However, incorporating a CFCN group remains a considerable challenge. In this work, we disclose a use of bromodifluoroacetonitrile (BrCFCN), a cost-effective and readily available reagent, as a radical source for cyanodifluoromethylation of alkyl alkenes, aryl alkenes, alkynes, and (hetero)arenes under photocatalytic conditions.

View Article and Find Full Text PDF

Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide support for new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for their use in specific biological tissues.

View Article and Find Full Text PDF

We have developed a glycosyl radical-based synthesis of -alkyl glycosides through a deoxygenative Giese addition-reduction-cyclization cascade, in which readily available 1-hydroxy carbohydrates serve as precursors for glycosyl radicals and aryl alkenes function as radical acceptors. This reaction not only provides an effective method for accessing a previously underexplored class of functionalized cyclopropanes but also enhances the application of Giese addition in the synthesis of -alkyl glycosides by derivatizing the radical intermediate generated through polar cyclization to yield a cyclopropane.

View Article and Find Full Text PDF

Perspective of Tribological Mechanisms for α-Alkene Molecules with Different Chain Lengths from Interface Behavior.

Langmuir

December 2024

State Key Laboratory of Fluorinated Functional Membrane Materials, Dongyue Fluorosilicone Technology Group, Zibo 256400, China.

Three α-alkene lubricants, differentiated by chain length, were selected as model compounds to investigate the influence of chain length on tribological properties. The novelty of this study lies in setting chain length as the sole variable to explore its impact on surface and adsorption energy. Based on the above findings, the study provides a unique explanation of the intrinsic relationship between chain length and tribological performance.

View Article and Find Full Text PDF

Catalytic Asymmetric Oxidative Coupling between C(sp)-H Bonds and Carboxylic Acids.

J Am Chem Soc

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.

The direct enantioselective functionalization of C(sp)-H bonds in organic molecules could fundamentally transform the synthesis of chiral molecules. In particular, the enantioselective oxidation of these bonds would dramatically change the production methods of chiral alcohols and esters, which are prevalent in natural products, pharmaceuticals, and fine chemicals. Remarkable advances have been made in the enantioselective construction of carbon-carbon and carbon-nitrogen bonds through the C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!