Glucocorticoids act through the glucocorticoid receptor (GR) and exert pleiotropic effects in different cancer types. In prostate cancer cells, GR and androgen receptor (AR) share overlapping transcriptomes and cistromes. Under enzalutamide treatment, GR signaling can bypass AR activation and promote castration resistance via the expression of a subset of AR-target genes. However, GR-dependent growth under enhanced antiandrogen inhibition occurs only in a subset of primed cells. On the other hand, glucocorticoids have been used successfully in the treatment of prostate cancer for many years. In the context of AR signaling, GR competes with AR for DNA-binding and has the potential to halt the proliferation rate of prostate cancer cells. Their target genes overlap by <50% and they execute unique functions in vivo. In addition, even when AR and GR upregulate the same transcriptional target gene, the effect might not be identical in magnitude. Besides being able to drive tumor proliferation, GR is also a key player in prostate cancer cell survival. Stimulation of GR activity can undermine the effects of enhanced antiandrogen treatment, chemotherapy and radiotherapy. GR activation in prostate cancer can increase prosurvival gene expression. Identifying the full spectrum of GR activity will inform the optimal use of glucocorticosteroids in prostate cancer. It will also determine the best strategies to target the protumorigenic effects of GR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9302310 | PMC |
http://dx.doi.org/10.1097/MD.0000000000029716 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!