Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrile imines are highly reactive and versatile dipoles and conventionally generated from unstable hydrazonyl halides under basic conditions. Herein, we report the first green and user-friendly protocol for generation of nitrile imines from Oxone-KBr oxidation of hydrazones and base-promoted dehydrobromination. The nitrile imines were demonstrated for 1,3-dipolar cycloaddition with various dipolarophiles, including alkene and alkyne groups. With its green nature, ease of operation, and air and moisture tolerance, we expect our method will find wide applications in organic synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c01391 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!