Objectives: To identify the clinical phenotypic and molecular pathogeneses of four cases of coagulation factor XII deficiency and to deepen the cognition of this disease.
Methods: Coagulation tests were performed through one stage of coagulation on a STAGO coagulation analyser. Coagulation factor XII antigen was detected using enzyme-linked immunosorbent assay. The species conservatism and structural change of mutant proteins were analysed using MegAlign and PYMOL. Meanwhile, missense variants and a novel splice site variant were identified using PolyPhen2 and NetGene2.
Results: The four cases had an observably prolonged activated partial thromboplastin time but without obvious bleeding tendency. Their coagulation factor XII activity (FⅫ:C) and antigen (FXII:Ag) were greatly reduced. Six mutations were detected: NM_000505.4:c.398-1G>A, NP_000496.2:p.(Pro182Leu), NP_000496.2:p.(Ser479Ter), NP_000496.2:p.(Cys559Arg), NC_000005.10:g.7217_7221delinsGTCTA and NM_000505.4:c.1681-1G>A. The first five are newly discovered mutations. The two missense mutation sites were highly conservative, and their protein secondary structure changes may occur not only on the mutation sites but also on other domains. In silico analysis revealed that NP_000496.2:p.(Pro182Leu) may be BENIGN, NP_000496.2:p.(Cys559Arg) may be damaging, and that NM_000505.4:c.398-1G>A and NM_000505.4:c.1681-1G>A are crucial for splicing.
Conclusion: We found six types of mutations, of which five were novel. The two missense mutation sites might be closely related to the function of coagulation factor XII. The mutations were the primary culprits of factor XII deficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/16078454.2022.2083482 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Wilmer Eye Institute, Johns Hopkins Medical Institute, Baltimore, Maryland, United States.
Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Majadahonda, Madrid, Spain.
Objectives: This study aimed to investigate the association of baseline coagulation proteins with hospitalization variables in COVID-19 patients admitted to ICU, as well as coagulation system changes after one-year post-discharge, taking into account gender-specific bias in the coagulation profile.
Methods: We conducted a prospective longitudinal study on 49 ICU-admitted COVID-19 patients. Proteins were measured using a Luminex 200™.
Ann Hematol
January 2025
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Analyze the clinical phenotype and gene mutations of a family with hereditary FXII deficiency, and preliminarily explore its phenotypic manifestations. The routine coagulation indicators and related coagulation factors were measured.Thromboelastography and thrombin generation tests simulated coagulation and anticoagulation states in vitro and in vivo.
View Article and Find Full Text PDFHematol Oncol Stem Cell Ther
January 2025
Department of Hematology, Ankara University School of Medicine, Ankara, Turkey.
Despite numerous reports on the procoagulant activities of G-CSF, the effect of plerixafor on the hemostatic system is not clearly understood. This study aims to evaluate the effects of plerixafor on the hemostatic system when used for autologous stem cell mobilization (ASCM) for poor mobilizers (PM) with lymphoma and multiple myeloma. Patients who were performed ASCM with plerixafor in combination with GCSF were prospectively enrolled.
View Article and Find Full Text PDFCells
December 2024
Astria Pharmaceuticals, Boston, MA 02210, USA.
The plaques associated with Alzheimer's disease are formed as a result of the aggregation of Aβ peptides, which vary in length from 38 to 43 amino acids. The 1-40 peptide is the most abundant, while the 1-42 peptide appears to be the most destructive to neurons and/or glial cells in a variety of assays. We have demonstrated that aggregated Aβ, a state prior to plaque formation, will activate the plasma bradykinin-forming pathway when tested in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!