Despite the potential of remote sensing for monitoring reservoir operation, few studies have investigated the extent to which reservoir releases can be inferred across different spatial and temporal scales. Through evaluating 21 reservoirs in the highly regulated Greater Mekong region, remote sensing imagery was found to be useful in estimating daily storage volumes for within-year and over-year reservoirs (correlation coefficients [CC] ≥ 0.9, normalized root mean squared error [NRMSE] ≤ 31%), but not for run-of-river reservoirs (CC < 0.4, 40% ≤ NRMSE ≤ 270%). Given a large gap in the number of reservoirs between global and local databases, the proposed framework can improve representation of existing reservoirs in the global reservoir database and thus human impacts in hydrological models. Adopting an Integrated Reservoir Operation Scheme within a multi-basin model was found to overcome the limitations of remote sensing and improve streamflow prediction at ungauged cascade reservoir systems where previous modeling approaches were unsuccessful. As a result, daily regulated streamflow was predicted competently across all types of reservoirs (median values of CC = 0.65, NRMSE = 8%, and Kling-Gupta efficiency [KGE] = 0.55) and downstream hydrological stations (median values of CC = 0.94, NRMSE = 8%, and KGE = 0.81). The findings are valuable for helping to understand the impacts of reservoirs and dams on streamflow and for developing more useful adaptation measures to extreme events in data sparse river basins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286455PMC
http://dx.doi.org/10.1029/2021WR031191DOI Listing

Publication Analysis

Top Keywords

remote sensing
12
highly regulated
8
sensing imagery
8
streamflow prediction
4
prediction highly
4
regulated transboundary
4
transboundary watersheds
4
watersheds multi-basin
4
multi-basin modeling
4
modeling remote
4

Similar Publications

2D Perovskite Heterojunction-Based Self-Powered Polarized Photodetectors with Controllable Polarization Ratio Enabled by Ferro-Pyro-Phototronic Effect.

Adv Sci (Weinh)

January 2025

Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China.

Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented.

View Article and Find Full Text PDF

Background: There is growing interest in developing sensing solutions for remote health monitoring to support the safety and independence of older adults. To ensure these technologies are practical and relevant, people-centred design is essential. This study aims to explore the involvement of various stakeholders across different developmental stages to inform the design and assess the capabilities of unobtrusive sensing solutions being developed as part of the Advanced Care Research Centre (ACRC), Edinburgh, UK.

View Article and Find Full Text PDF

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

Estimating soil profile salinity under vegetation cover based on UAV multi-source remote sensing.

Sci Rep

January 2025

Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, China.

Soil salinization is the most prevalent form of land degradation in arid, semi-arid, and coastal regions of China, posing significant challenges to local crop yield, economic development, and environmental sustainability. However, limited research exists on estimating soil salinity at different depths under vegetation cover. This study employed field-controlled soil experiments to collect multi-source remote sensing data on soil salt content (SSC) at varying depths beneath barley growth.

View Article and Find Full Text PDF

Assessing foraging landscape quality in Quebec's commercial beekeeping through remote sensing, machine learning, and survival analysis.

J Environ Manage

January 2025

Nectar Technologies Inc., 6250 Rue Hutchison #302, Montréal, QC, Canada. Electronic address:

Honey bees (Apis mellifera) play an important role in our agricultural systems. In recent years, beekeepers have reported high colony mortality rates in several parts of the world. Inadequate foraging landscapes are often cited as a major factor deterring honey bee colony health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!