The properties of cold, dense, low energy ( 150 eV) ions within Earth's magnetosphere between 6 and 14 distance are examined using data sampled by Time History of Events and Macroscale Interactions during Substorms spacecraft during a new low-energy plasma mode that operated from June 2016 to July 2017. These ions are a persistent feature of the magnetosphere during enhanced solar wind dynamic pressure and/or magnetospheric activity. These ions have densities ranging from 0.5 to tens of , with a mean of 1 and temperatures of a few to tens of eV, with a mean of 13 eV. These yield cold to hot ion density and temperature ratios that are 4.4 and , respectively. Comparisons reveal that the cold ion densities are positively correlated with solar wind dynamic pressure. These ions are organizable, according to their pitch-angle distribution, as being transverse/convection dominated (interpreted as plume plasma) or magnetic field-aligned (FAL) (uni- or bi-directional characteristic of ion outflow or cloak plasma). Transverse ions preferentially occur in the prenoon to dusk sectors during sustained active magnetospheric conditions driven by enhanced solar wind dynamic pressure under southward and westward IMF orientations. Transverse ion velocities (reaching several tens of km/s) have a westward directed tendency with a slight radially outward preference. In contrast FAL ions preferentially occur from morning to noon during northward IMF orientations, enhanced solar wind dynamic pressure, and quiet magnetospheric conditions within several hours after moderate to strong activity. The FAL ions also have bulk velocities 30 km/s, with an eastward and radially outward tendency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285958PMC
http://dx.doi.org/10.1029/2021JA029208DOI Listing

Publication Analysis

Top Keywords

solar wind
20
wind dynamic
20
dynamic pressure
20
enhanced solar
12
dense low
8
low energy
8
ions
8
ions earth's
8
magnetospheric activity
8
ions preferentially
8

Similar Publications

The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.

View Article and Find Full Text PDF

Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets.

View Article and Find Full Text PDF

Autonomous microgrids (ATMG), with green power sources, like solar and wind, require an efficient control scheme to secure frequency stability. The weather and locationally dependent behavior of the green power sources impact the system frequency imperfectly. This paper develops an intelligent, i.

View Article and Find Full Text PDF

A vehicle-to-grid (V2G) technology enables bidirectional power exchange between electric vehicles (EVs) and the power grid, presenting enhanced grid stability and load management opportunities. This study investigates a comprehensive microgrid system integrating EVs with solar (8 MW), wind (4.5 MW), and diesel generation sources, focusing on peak load reduction and frequency regulation capabilities.

View Article and Find Full Text PDF

Solar Wind Irradiation of Methane and Methane-Water Ices: A Molecular Dynamics Approach.

ACS Earth Space Chem

December 2024

Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, United States.

Molecular dynamics simulations were performed to characterize reaction products, resulting from solar wind irradiation, namely, H, of methane and methane-water ices. In our approach, we used seven 0.829 keV H (total energy of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!