Germanium sulfide (GeS) is a layered monochalcogenide semiconductor with a band gap of about 1.6 eV. To verify the suitability of GeS for field-effect-based device applications, a detailed understanding of the electronic transport mechanisms of GeS-metal junctions is required. In this work, we have used conductive atomic force microscopy (c-AFM) to study charge carrier injection in metal-GeS nanocontacts. Using contact current-voltage spectroscopy, we identified three dominant charge carrier injection mechanisms: thermionic emission, direct tunneling, and Fowler-Nordheim tunneling. In the forward-bias regime, thermionic emission is the dominating current injection mechanism, whereas in the reverse-bias regime, the current injection mechanism is quantum mechanical tunneling. Using tips of different materials (platinum, n-type-doped silicon, and highly doped p-type diamond), we found that the Schottky barrier is almost independent of the work function of the metallic tip, which is indicative of a strong Fermi-level pinning. This strong Fermi-level pinning is caused by charged defects and impurities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289947 | PMC |
http://dx.doi.org/10.1021/acs.jpcc.2c02827 | DOI Listing |
Adv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.
View Article and Find Full Text PDFACS Nano
January 2025
College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
Zn-MnO batteries with two-electron transfer harvest high energy density, high working voltage, inherent safety, and cost-effectiveness. Zn as the dominant charge carriers suffer from sluggish kinetics due to the strong Zn-MnO coulombic interaction, which is also the origin of pestilent MnO lattice deformation and performance degradation. Current studies particularly involve H insertion-dominating chemistry, where the long-term cycle stability remains challenging due to the accumulative Zn insertion and structural collapse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!