We present seismic tomographic results from a unique seismic refraction and wide-angle survey along a 600 km long flow-line corridor of oceanic lithosphere ranging in age from 0 to 27 Ma in the equatorial Atlantic Ocean at 2° 43'S. The velocities in the crust near the ridge axis rapidly increase in the first 6 Myr and then change gradually with age. The upper crust (Layer 2) thickness varies between 2 and 2.4 km with an average thickness of 2.2 km and the crustal thickness varies from 5.6 to 6 km along the profile with an average crustal thickness of 5.8 km. At some locations, we observe negative velocity anomalies (∼-0.3 km/s) in the lower crust which could be either due to chemical heterogeneity in gabbroic rocks and/or the effects of fault related deformation zones leading to an increase in porosities up to 1.6% depending on the pore/crack geometry. The existence of a low velocity anomaly beneath the ridge axis suggests the presence of partial melt (∼1.3%) in the lower crust. Upper mantle velocities also remain low (∼7.8 km/s) from ridge axis up to 5 Ma, indicating a high temperature regime associated with mantle melting zone underneath. These results suggest that the evolution of the crust and uppermost mantle at this location occur in the first 10 Ma of its formation and then remains unchanged. Most of the structures in the older crust and upper mantle are fossilized structures and could provide information about past processes at ocean spreading centers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285972 | PMC |
http://dx.doi.org/10.1029/2020JB021390 | DOI Listing |
Open Res Eur
December 2024
Geosciences, Universitetet i Oslo Institutt for geofag, Oslo, Oslo, 0371, Norway.
Background: Despite extensive studies of the Mesozoic-Cenozoic magmatic history of Svalbard, little has been done on the Paleozoic magmatism due to fewer available outcrops.
Methods: 2D seismic reflection data were used to study magmatic intrusions in the subsurface of eastern Svalbard.
Results: This work presents seismic evidence for west-dipping, Middle Devonian-Mississippian sills in eastern Spitsbergen, Svalbard.
Nat Commun
January 2025
Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA.
Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.
View Article and Find Full Text PDFNature
January 2025
Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands.
Seismic tomographic models based only on wave velocities have limited ability to distinguish between a thermal or compositional origin for Earth's 3D structure. Complementing wave velocities with attenuation observations can make that distinction, which is fundamental for understanding mantle convection evolution. However, global 3D attenuation models are only available for the upper mantle at present.
View Article and Find Full Text PDFJSES Int
November 2024
Division of Hand and Upper-Extremity Surgery, Department of Orthopaedic Surgery, Geisinger Commonwealth School of Medicine, Geisinger MSKI, Danville, PA, USA.
Background: Revision total elbow arthroplasty (rTEA) remains a technically challenging procedure with potential for substantial morbidity. Cases involving excessively long cement mantles, removal of well-fixed implants or infected revisions requiring complete cement removal introduce additional technical challenges. Our purpose was to describe the outcomes, results, and complications associated with the use of cortical windows in rTEA.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.
Subducted plates often stagnate in the mantle transition zone (MTZ), and the fate of the stagnant slabs is still debatable. They may sink into the lower mantle, or remain partially trapped in the MTZ, but it is uncertain whether they can return to the upper mantle. We report geochemical evidence of late-Miocene (~6 Ma) basalts from, and upper mantle seismic evidence beneath Shuangyashan, an area above the slab tear of the stagnant Pacific plate in eastern Asia, to show how the slab returns to the upper mantle from the MTZ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!