When a lightning flash is propagating in the atmosphere it is known that especially the negative leaders emit a large number of very high frequency (VHF) radio pulses. It is thought that this is due to streamer activity at the tip of the growing negative leader. In this work, we have investigated the dependence of the strength of this VHF emission on the altitude of such emission for two lightning flashes as observed by the Low Frequency ARray (LOFAR) radio telescope. We find for these two flashes that the extracted amplitude distributions are consistent with a power-law, and that the amplitude of the radio emissions decreases very strongly with source altitude, by more than a factor of 2 from 1 km altitude up to 5 km altitude. In addition, we do not find any dependence on the extracted power-law with altitude, and that the extracted power-law slope has an average around 3, for both flashes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286657 | PMC |
http://dx.doi.org/10.1029/2021EA001958 | DOI Listing |
J Chem Phys
December 2024
Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan.
For the clarification of dynamics of photogenerated carriers in practical organic solar cell devices, we have developed a methodology to simultaneously acquire reflection-mode transient optical absorption (ΔA) and transient electric current (Δi) signals. For a typical polythiophene:fullerene bulk heterojunction solar cell device, both the ΔA and Δi signals due to the photogenerated carriers are characterized by the power-law decays of ∝t-α, which are interpreted by detrapping-limited recombination at earlier times than ∼1 μs and trap-free diffusion/drift at later times. Furthermore, we have succeeded in observing switching of the power index α for ΔA signals as well as for Δi signals; the time at which switching occurs indicates the extraction of carriers by electrodes (transit times).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Ifremer MASAE Microbiologie Aliment Santé Environnement, F-44000, Nantes, France.
In the field of tissue engineering, determining the mechanical properties of hydrogels is a key prerequisite to develop biomaterials mimicking the properties of the extracellular matrix. In mechanobiology, understanding the relationships between the mechanical properties and physiological state of cells is also essential. Time-dependent mechanical characterization of these soft materials is commonly achieved by atomic force microscopy (AFM) experiments in liquid environment.
View Article and Find Full Text PDFBr J Anaesth
November 2024
Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany. Electronic address:
Background: Aperiodic (nonoscillatory) electroencephalogram (EEG) activity can be characterised by its power spectral density, which decays according to an inverse power law. Previous studies reported a shift in the spectral exponent α from consciousness to unconsciousness. We investigated the impact of aperiodic EEG activity on parameters used for anaesthesia monitoring to test the hypothesis that aperiodic EEG activity carries information about the hypnotic component of general anaesthesia.
View Article and Find Full Text PDFPeerJ
November 2024
Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion in Dry Valleys, China West Normal University, Nanchong, China.
In semi-arid and arid areas, gully erosion is one of the most destructive forms of erosion and causes serious land degradation and resource destruction. Steepland gullies are widely distributed in the dry valleys of southwest China, and their formation is one of the main causes of soil erosion and the destruction of sloping farmland in the region. Previous research on the development of steepland gullies is limited, and further study is needed.
View Article and Find Full Text PDFSci Rep
November 2024
Departament of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
Solitary wave solutions to the nonlinear evolution equations have recently attracted widespread interest in engineering and physical sciences. In this work, we investigate the fractional generalised nonlinear Pochhammer-Chree equation under the power-law of nonlinearity with order m. This equation is used to describe longitudinal deformation wave propagation in an elastic rod.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!