All cereal crops engage in arbuscular mycorrhizal symbioses which can have profound, but sometimes deleterious, effects on plant nutrient acquisition and growth. The mechanisms underlying variable mycorrhizal responsiveness in cereals are not well characterised or understood. Adapting crops to realise mycorrhizal benefits could reduce fertiliser requirements and improve crop nutrition where fertiliser is unavailable. We conducted a phenotype screen in wheat ( L.), using 99 lines of an Avalon × Cadenza doubled-haploid mapping population. Plants were grown with or without a mixed inoculum containing 5 species of arbuscular mycorrhizal fungi. Plant growth, nutrition and mycorrhizal colonisation were quantified. Plant growth response to inoculation was remarkably varied among lines, ranging from more than 30% decrease to 80% increase in shoot biomass. Mycorrhizal plants did not suffer decreasing shoot phosphorus concentration with increasing biomass as observed in their non-mycorrhizal counterparts. The extent to which mycorrhizal inoculation was beneficial for individual lines was negatively correlated with shoot biomass in the non-mycorrhizal state but was not correlated with the extent of mycorrhizal colonisation of roots. Highly variable mycorrhizal responsiveness among closely related wheat lines and the identification of several QTL for these traits suggests the potential to breed for improved crop-mycorrhizal symbiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286679PMC
http://dx.doi.org/10.1002/fes3.370DOI Listing

Publication Analysis

Top Keywords

mycorrhizal
9
growth response
8
mapping population
8
potential breed
8
arbuscular mycorrhizal
8
variable mycorrhizal
8
mycorrhizal responsiveness
8
plant growth
8
mycorrhizal colonisation
8
shoot biomass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!