An intermediate complexity moist general circulation model is used to investigate the sensitivity of the quasi-biennial oscillation (QBO) to resolution, diffusion, tropical tropospheric waves, and parameterized gravity waves. Finer horizontal resolution is shown to lead to a shorter period, while finer vertical resolution is shown to lead to a longer period and to a larger amplitude in the lowermost stratosphere. More scale-selective diffusion leads to a faster and stronger QBO, while enhancing the sources of tropospheric stationary wave activity leads to a weaker QBO. In terms of parameterized gravity waves, broadening the spectral width of the source function leads to a longer period and a stronger amplitude although the amplitude effect saturates in the mid-stratosphere when the half-width exceeds m/s. A stronger gravity wave source stress leads to a faster and stronger QBO, and a higher gravity wave launch level leads to a stronger QBO. All of these sensitivities are shown to result from their impact on the resultant wave-driven momentum torque in the tropical stratosphere. Atmospheric models have struggled to accurately represent the QBO, particularly at moderate resolutions ideal for long climate integrations. In particular, capturing the amplitude and penetration of QBO anomalies into the lower stratosphere (which has been shown to be critical for the tropospheric impacts) has proven a challenge. The results provide a recipe to generate and/or improve the simulation of the QBO in an atmospheric model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286580 | PMC |
http://dx.doi.org/10.1029/2021MS002568 | DOI Listing |
Commun Med (Lond)
January 2025
Department of Demography, University of California, Berkeley, California, USA.
Background: Digital data sources such as mobile phone call detail records (CDRs) are increasingly being used to estimate population mobility fluxes and to predict the spatiotemporal dynamics of infectious disease outbreaks. Differences in mobile phone operators' geographic coverage, however, may result in biased mobility estimates.
Methods: We leverage a unique dataset consisting of CDRs from three mobile phone operators in Bangladesh and digital trace data from Meta's Data for Good program to compare mobility patterns across these sources.
PLoS Comput Biol
October 2024
Department of Mathematics and Statistics, University of Victoria, Victoria, Canada.
Non-pharmaceutical interventions (NPIs) are effective in mitigating infections during the early stages of an infectious disease outbreak. However, these measures incur significant economic and livelihood costs. To address this, we developed an optimal control framework aimed at identifying strategies that minimize such costs while ensuring full control of a cross-regional outbreak of emerging infectious diseases.
View Article and Find Full Text PDFSci Data
August 2024
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Progress in understanding the impact of mesoscale variability, including gravity waves (GWs), on atmospheric circulation is often limited by the availability of global fine-resolution observations and simulated data. This study presents momentum fluxes due to atmospheric GWs extracted from four months of an experimental "nature run", integrated at a 1 km resolution (XNR1K) using the Integrated Forecast System (IFS) model. Helmholtz decomposition is used to compute zonal and meridional flux of vertical momentum from ~1.
View Article and Find Full Text PDFSci Data
April 2023
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China.
The availability of terrestrial water storage anomaly (TWSA) data from the Gravity Recovery and Climate Experiment (GRACE) supports many hydrological applications. Five TWSA products are operational and publicly available, including three based on mass concentration (mascon) solutions and two based on the synthesis of spherical harmonic coefficients (SHCs). The mascon solutions have advantages regarding the synthesis of SHCs since the basis functions are represented locally rather than globally, which allows geophysical data constraints.
View Article and Find Full Text PDFA North/South difference in crustal thickness is likely at the origin of the Martian dichotomy in topography. Recent crustal thickness maps were obtained by inversion of topography and gravity data seismically anchored at the InSight station. On average, the Martian crust is 51-71 km thick with a southern crust thicker by 18-28 km than the northern one.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!