Biomass discharged from primary industries can be converted into methane by fermentation. This methane is used for generating electricity with solid oxide fuel cells (SOFCs). This methane fermentation provides HS, which reduces the efficiency of SOFCs even at a level as low as a few parts per million. It has been experimentally reported that a nitrogen (N)-doped graphene-based material known as pyridinic N removes HS an oxidation reaction compared with another graphene-based material known as oxidized N. To understand this experimental result, we investigated HS adsorption on pyridinic N and oxidized N by a density functional theory analysis and further examined the activation barrier of dissociation reactions. We found that the adsorption of HS on pyridinic N is more stable than that on oxidized N. In addition, the HS dissociation reaction occurs only on pyridinic N.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264117 | PMC |
http://dx.doi.org/10.1039/d2ra00898j | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.
Iron sites dispersed on nonacidic siliceous supports have been reported to be catalytically active for propane dehydrogenation (PDH), yet the precise relationship between site structure and catalytic activity remains elusive. This study provides a comprehensive understanding of the catalytic performance of iron supported on dealuminated BEA (DeAlBEA) zeolites for PDH. Using XAS, UV-vis, and IR spectroscopy of adsorbed pyridine and deuterated acetonitrile, it was found that, at an Fe/Al of 0.
View Article and Find Full Text PDFNanomicro Lett
December 2024
Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.
Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48103, United States.
Sum frequency generation vibrational spectroscopy was applied to study the surface hydration and protein adsorption behavior on several polymer coatings based on pyridine, imidazole, and amine side groups along with vinyl or methacrylate backbones and their corresponding zwitterionic forms with carboxybetaine or sulfobetaine side chains, prepared by initiated chemical vapor deposition (iCVD). iCVD also enables facile tuning of the cross-linking density of the polymer coatings by blending in a cross-linker during the deposition, namely, 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl cyclotetrasiloxane. Our results show that both the low- and high-cross-linking density zwitterionic polymers exhibit significantly better antifouling activities compared to those of the polymers without the zwitterionic side chains.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
Liquid crystals (LCs), when interfaced with chemically functionalized surfaces, can amplify a range of chemical and physical transformations into optical outputs. While metal cation-binding sites on surfaces have been shown to provide a basis for the design of chemoresponsive LCs, the cations have been found to dissociate from the surfaces and dissolve slowly into LCs, resulting in time-dependent changes in the properties of LC-solid interfaces (which impacts the reliability of devices incorporating such surfaces). Here, we explore the use of surfaces comprising metal-coordinating polymers to minimize the dissolution of metal cations into LCs and characterize the impact of the interfacial environment created by the coordinating polymer on the ordering and time-dependent properties of LCs.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Materials Science and Engineering, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Sulfurized polyacrylonitrile (SPAN) has emerged as a highly promising cathode material for next-generation lithium-sulfur (Li-S) batteries primarily due to its non-polysulfide dissolution and excellent cycle stability. Nevertheless, the specific roles and impacts of the pyrolyzed polyacrylonitrile, which constitutes the polymer backbone of SPAN, remain inadequately understood. In this study, comprehensive investigations from multiple aspects, including electrochemistry, spectroscopy, electron microscopy, and theoretical calculations, were conducted on a series of SPAN materials with various sulfur contents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!