Gold nanoparticles (GNPs) can be manufactured in various shapes, and their size is programmable, which permits the study of the effects imposed by these parameters on biological processes. However, there is currently no clear evidence that a certain shape or size is beneficial. To address this issue, we have utilised GNPs and gold nanorods (GNRs) functionalised with model epitopes derived from chicken ovalbumin (OVA and OVA). By using two distinct epitopes, it was possible to draw conclusions regarding the impact of nanoparticle shape and size on different aspects of the immune response. Our findings indicate that the peptide amphiphile-coated GNPs and GNRs are a safe and versatile epitope-presenting system. Smaller GNPs (∼15 nm in diameter) induce significantly less intense T-cell responses. Furthermore, effective antigen presentation MHC-I was observed for larger spherical particles (∼40 nm in diameter), and to a lesser extent for rod-like particles (40 by 15 nm). At the same time, antigen presentation MHC-II strongly correlated with the cellular uptake, with smaller GNPs being the least efficient. We believe these findings will have implications for vaccine development, and lead to a better understanding of cellular uptake and antigen egress from lysosomes into the cytosol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260517 | PMC |
http://dx.doi.org/10.1039/d2ra03027f | DOI Listing |
J Physiol
January 2025
Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.
Ischaemic stroke is a leading cause of death and disability. Circulating extracellular vesicles (EVs) post-stroke may help brain endothelial cells (BECs) counter ischaemic injury. However data on how EVs from ischaemic stroke patients, considering injury severity, affect these cells are limited.
View Article and Find Full Text PDFLangmuir
January 2025
Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany.
Chloroethenes (CHCl with = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania.
The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina.
Background: Children with cleft lip ± palate (CL/P) may undergo nasoalveolar molding (NAM) before surgery to achieve arch alignment and tension-free closure, yet the endpoint of arch dimensions has not been defined.
Objective: To characterize the size and shape of infant palates using anatomic landmarks on magnetic resonance imaging in infants without CL/P.
Methods: Magnetic resonance imaging of infants without cleft palate younger than 3 months were reviewed and 13 measurements were taken to define palatal shape: distance between incisive foramen (IF) and incisors (IN), IF and middle of canines (MOC), between MOCs, between first molars (FM), 2 depth and 4 angle measurements.
Am J Biol Anthropol
January 2025
Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, Oxford, UK.
Objectives: With contemporary, human-induced climate change at a crisis point, extreme weather events (e.g., cyclones, heatwaves, floods) are becoming more frequent, intense, and difficult to predict.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!