Gene expression in plant mitochondria is mainly regulated by nuclear-encoded proteins on a post-transcriptional level. Pentatricopeptide repeat (PPR) proteins play a major role by participating in mRNA stability, splicing, RNA editing, and translation initiation. PPR proteins were also shown to be part of the mitochondrial ribosome (rPPR proteins), which may act as regulators of gene expression in plants. In this study, we focus on a mitochondrial-located P-type PPR protein-DWEORG1-from Arabidopsis thaliana. Its abundance in mitochondria is high, and it has a similar expression pattern as rPPR proteins. Mutant dweorg1 plants exhibit a slow-growth phenotype. Using ribosome profiling, a decrease in translation efficiency for cox2, rps4, rpl5, and ccmF was observed in dweorg1 mutants, correlating with a reduced accumulation of the Cox2 protein in these plants. In addition, the mitochondrial rRNA levels are significantly reduced in dweorg1 compared with the wild type. DWEORG1 co-migrates with the ribosomal proteins Rps4 and Rpl16 in sucrose gradients, suggesting an association of DWEORG1 with the mitoribosome. Collectively, this data suggests that DWEORG1 encodes a novel rPPR protein that is needed for the translation of cox2, rps4, rpl5, and ccmF and provides a stabilizing function for mitochondrial ribosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304396 | PMC |
http://dx.doi.org/10.1038/s41598-022-16812-0 | DOI Listing |
Discov Oncol
January 2025
Department of Urology, Beijing TianTan Hospital, Capital Medical University, No. 119 South 4 Ring West Road, Fengtai District, 100070, Beijing, China.
Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.
Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.
J Orthop Res
January 2025
Department of East Hospital Orthopaedic Trauma, Zibo Central Hospital, Zibo, China.
Ewing sarcoma (ES) is a malignant bone tumor prevalent among children and adolescents. Disulfidptosis represents a novel form of cell death; however, the mechanism of disulfidptosis in ES remains unclear. Our aim is to explore the disulfidptosis-related prognostic signature in ES.
View Article and Find Full Text PDFJ Cancer
January 2025
Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China.
Targeted inhibition of mitochondrial oxidative phosphorylation (OXPHOS) complex generation is an emerging and promising cancer treatment strategy, but limited targets and specific inhibitors have been reported. Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is an atypical RNA-binding protein that regulates the stability of all 13 mitochondrial DNA-encoded mRNA (mt-mRNA) and thus participates in the synthesis of the OXPHOS complex. LRPPRC is also a prospective therapeutic target for lung adenocarcinoma, serving as a promising target for OXPHOS inhibition.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032, United States.
Plants make pyrimidine base substitutions in organellar mRNAs through the action of sequence-specific nuclear-encoded enzymes. Pentatricopeptide repeat (PPR) proteins are essential for ensuring specificity, while the enzymatic DYW domain is often present at the C-terminus of a PPR protein and dependent on the variant possessing C-to-U and/or U-to-C RNA editing activities. Expression of exogenous DYW-KP variant enzymes in bacteria leads to the modification of RNAs suggestive of U-to-C base changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!