Improved thermostability of D-allulose 3-epimerase from Clostridium bolteae ATCC BAA-613 by proline residue substitution.

Protein Expr Purif

College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China. Electronic address:

Published: November 2022

d-allulose, a rare sugar that is scarce in nature, exerts several beneficial effects and has commercial potential. d-allulose 3-epimerase (DAEase) plays a vital role in catalyzing the isomerization from d-fructose to d-allulose. However, the industrial application of DAEase for d-allulose production is hindered by its poor long-term thermostability. In the present research, we introduced a proline residue (i) to restrict its spatial conformation and (ii) to reduce the entropy of the unfolded state of DAEase. The t value of the double-site Clostridium bolteae DAEase mutant Cb-51P/89P was prolonged to 58 min at 55 °C, a 2.32-fold increase compared with wild-type DAEase. The manipulation did not cause obvious changes in the enzymatic properties, including optimum pH, optimal temperature, optimum metal ion, and enzymatic activity. As the accumulation of multiple small effects through proline substitution could dramatically improve the thermostability of the mutant protein, our method to improve the thermostability while roughly retaining the original enzymatic properties is promising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2022.106145DOI Listing

Publication Analysis

Top Keywords

d-allulose 3-epimerase
8
clostridium bolteae
8
proline residue
8
enzymatic properties
8
improve thermostability
8
d-allulose
5
daease
5
improved thermostability
4
thermostability d-allulose
4
3-epimerase clostridium
4

Similar Publications

D-Allose, a rare sugar, has gained significant attention not only as a low-calorie sweetener but also for its anticancer, antitumor, anti-inflammatory, antioxidant, and other pharmaceutical properties. Despite its potential, achieving high-level biosynthesis of D-allose remains challenging due to inefficient biocatalysts, low conversion rates, and the high cost of substrates. Here, we explored the food-grade coexpression of D-allulose 3-epimerase (Bp-DAE) and L-rhamnose isomerase (BsL-RI) within a single cell using WB800N as the host.

View Article and Find Full Text PDF

Optimization of fermentation conditions for whole cell catalytic synthesis of D-allulose by engineering Escherichia coli.

Sci Rep

December 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.

D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.

View Article and Find Full Text PDF

d-Allulose 3-epimerase (DAEase) derived from has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction.

View Article and Find Full Text PDF

D-Allulose 3-epimerase catalyzes C-3 epimerization between D-fructose and D-allulose was found in strain M30. The enzyme gene was cloned, and its recombinant enzyme and the mutant variants were expressed in Using the information of the sequence and model structure, we succeed in the improvement of melting temperature for the enzyme without significant loss of the enzyme activity by protein engineering method. The melting temperatures were increased by 2.

View Article and Find Full Text PDF

Gut Microbial Utilization of the Alternative Sweetener, D-Allulose, via AlsE.

bioRxiv

November 2024

College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, Maryland, USA.

D-allulose, a rare sugar with emerging potential as a low-calorie sweetener, has garnered attention as an alternative to other commercially available alternative sweeteners, such as sugar alcohols, which often cause severe gastrointestinal discomfort. D-allulose-6-phosphate 3-epimerase (AlsE) is a prokaryotic enzyme that converts D-allulose-6-phosphate into D-fructose-6-phopshate, enabling its use as a carbon source. However, the taxonomic breadth of AlsE across gut bacteria remains poorly understood, hindering insights into the utilization of D-allulose by microbial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!